\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{liviabrookes} \pdfinfo{ /Title (chemistry.pdf) /Creator (Cheatography) /Author (liviabrookes) /Subject (Chemistry Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{3E8C38} \definecolor{LightBackground}{HTML}{F2F7F2} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Chemistry Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{liviabrookes} via \textcolor{DarkBackground}{\uline{cheatography.com/164261/cs/35180/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}liviabrookes \\ \uline{cheatography.com/liviabrookes} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 3rd November, 2022.\\ Updated 3rd November, 2022.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Decomposition Reactions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Metal Carbonates}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{when metal carbonates decompose they form a metal oxide and carbon dioxide gas.} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{eg. when solid green copper carbonate is heated, a black solid and a colourless gas is formed. The gas turns limewater cloudy when bubbled through it.} \tn % Row Count 6 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{copper carbonate -{}-\textgreater{} copper oxide + carbon dioxide} \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{an exception of this rule is silver carbonate, which decomposes to form silver metal, carbon dioxide, and oxygen.}}} \tn % Row Count 10 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Metal Hydroxides}}} \tn % Row Count 11 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{when metal hydroxides decompose they form a metal oxide and water.} \tn % Row Count 13 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{eg. when solid white calcium hydroxide is heated, a white solid and a colourless liquid is formed. The liquid turns blue cobolt chloride paper pink.} \tn % Row Count 16 (+ 3) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{calcium hydroxide -{}-\textgreater{} calcium oxide + water} \tn % Row Count 17 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Metal Hydrogen Carbonates}} (bicarbonates)} \tn % Row Count 18 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{when metal hydrogen carbonates decompose they form a metal carbonate, carbon dioxide, and water.} \tn % Row Count 20 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{eg. sodium bicarbonate -{}-\textgreater{} sodium carbonate + carbon dioxide + water} \tn % Row Count 22 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Catalytic Decomposition}}} \tn % Row Count 23 (+ 1) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{a catalyst reduces the amount of energy needed for a reaction to proceed. They allow reactions to take place at room temperature that would otherwise require higher temperatures.} \tn % Row Count 27 (+ 4) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Hydrogen peroxide: the decomposition can be sped up by the catalyst manganese dioxide (MnO₂).} \tn % Row Count 29 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Combination/Synthesis Reactions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Chemical reactions where the atoms of one element react with the atoms of another element to form a single compound.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{element {\bf{A}} + element {\bf{B}} -{}-\textgreater{} element {\bf{AB}}} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Combination Reactions with Oxygen}}} \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{-sometimes called oxidation reactions} \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{-when heat/light is produced it is also known as combustion/burning} \tn % Row Count 8 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{-the product is more stable than the reactants} \tn % Row Count 9 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{-can have a unique flame colour (see important observations)} \tn % Row Count 11 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Ionic Compounds}}} \tn % Row Count 12 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{when metal elements combine with non-metal elements.}}} \tn % Row Count 14 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{-valence electrons are transferred from the metal to the non-metal} \tn % Row Count 16 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{-the metal forms a positive ion and the non-metal forms a negative ion} \tn % Row Count 18 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{-the ions are held together by electrostatic forces of attraction (positive-negative)} \tn % Row Count 20 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Covalent Compounds}}} \tn % Row Count 21 (+ 1) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\emph{when non-metals combine with other non-metals.}}} \tn % Row Count 22 (+ 1) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{-bonding electrons are shared so that each atom has a stable full valence electron shell} \tn % Row Count 24 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.24425 cm} x{3.73275 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Definitions}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Protons}} & positive charge, large mass, in the atom nucleus, top left number \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{Neutrons}} & neutral charge, large mass, in the atom nucleus, subtract the number of protons from the bottom right number \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} {\bf{Electrons}} & negative charge, very tiny mass, in the outer shells, top left number \tn % Row Count 10 (+ 3) % Row 3 \SetRowColor{white} {\bf{Anion}} & negatively charged ion \tn % Row Count 11 (+ 1) % Row 4 \SetRowColor{LightBackground} {\bf{Cation}} & positively charged ion \tn % Row Count 12 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{The number of protons deciphers the atom. The number of neutrons can change to create {\bf{isotropes}}.} \tn % Row Count 14 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{When forming equations, always put the cation first eg. Na + Cl -{}-\textgreater{} NaCl not ClNa} \tn % Row Count 16 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Chemical Reactions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{'During a chemical reaction matter cannot be created nor destroyed.'} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{This is the {\bf{law of conservation of mass}}.} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{This means that the reactants and products shown in a chemical equation must balance.} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Eg. 4Fe +3O₂-{}-\textgreater{}2Fe₂O₃} \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{In this equation, the 4 is a {\bf{coefficient}}. These are whole numbers that multiply the following atom/molecule.} \tn % Row Count 9 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{In this equation, the 2 is a {\bf{subscript}}. These are whole numbers that represent the number of atoms/molecules immediately proceeding it.} \tn % Row Count 12 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Precipitation Reactions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{soluble means dissolvable}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{-some ionic salts will readily dissolve in water- these are soluble} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{-when they dissolve the ions dissociate (break apart into their + and - ions)} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{-other ionic salts will only sparingly dissolve in water- these are considered insoluble} \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{AB}} + {\bf{CD}} -{}-\textgreater{} {\bf{AD}} + {\bf{BC}}} \tn % Row Count 8 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{-a precipitate will only form if one of the products formed is insoluble} \tn % Row Count 10 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{-you will observe the solution becoming cloudy and typically white solids will form} \tn % Row Count 12 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{eg. lead nitrate + sodium carbonate -{}-\textgreater{} lead carbonate + sodium nitrate} \tn % Row Count 14 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{colourless solution of lead nitrate mixed with colourless solution of sodium carbonate forms white precipitate of lead carbonate in a colourless solution of sodium nitrate.} \tn % Row Count 18 (+ 4) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{two soluble solutions were mixed together which allowed ions to exchange, forming the insoluble lead carbonation as a precipitate.} \tn % Row Count 21 (+ 3) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{lead carbonate is insoluble because lead ions and carbonate ions are more attracted to each other than they are to water.} \tn % Row Count 24 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.29402 cm} x{3.68298 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Important Observations}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Metals}} & silvery grey except copper which is pinky orange. Copper metal formed in a displacement reaction is reddy-brown. \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} {\bf{Gas}} & oxygen, hydrogen, and carbon dioxide are all colourless. \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{Carbonates}} & white solids except copper carbonate which is a green solid and silver carbonate which is a yellow solid. \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} {\bf{Hydroxides}} & white solids except iron (II) hydroxide which is a green solid, iron (III) hydroxide which is an orange/red solid, and copper hydroxide which is a blue solid. \tn % Row Count 16 (+ 6) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Hydrogen peroxide is a colourless liquid.} \tn % Row Count 17 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Manganese dioxide is a black solid which catalyses the decomposition of hydrogen peroxide into water and oxygen gas.} \tn % Row Count 20 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Combination Reaction Observations}}} \tn % Row Count 21 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Magnesium burns with a bright light to form a grey-white ash of MgO.} \tn % Row Count 23 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Sulfur; yellow non-metal- burns with a blue flame to form a colourless gas with a suffocating, choking odour, SO₂.} \tn % Row Count 26 (+ 3) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Carbon; black non-metal- burns with a yellowy flame to make a colourless gas CO₂.} \tn % Row Count 28 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Iron + Sulfur react when heated- glows and forms a black non-magnetic solid of FeS.} \tn % Row Count 30 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{1.29402 cm} x{3.68298 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Important Observations (cont)}} \tn % Row 11 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Hydrogen; colourless gas + O₂ will explode with a small flame. After heating the solid glows a red-hot and a black solid is formed.} \tn % Row Count 3 (+ 3) % Row 12 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\bf{Tests for Products Observations}}} \tn % Row Count 4 (+ 1) % Row 13 \SetRowColor{LightBackground} Hydrogen & gas burns with a squeaky pop \tn % Row Count 5 (+ 1) % Row 14 \SetRowColor{white} Carbon Dioxide & gas turns colourless limewater cloudy/milky \tn % Row Count 7 (+ 2) % Row 15 \SetRowColor{LightBackground} Oxygen & gas relights a glowing splint \tn % Row Count 8 (+ 1) % Row 16 \SetRowColor{white} Water & turns blue cobolt chloride paper pink \tn % Row Count 10 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Displacement Reactions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{when a single atom 'displaces' another metal ion from within a compound.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{More reactive metals on the activity series replace a less reactive metal ion from the compound. Ag is the least reactive metal.} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{metal {\bf{A}} +compound {\bf{BC}} -{}-\textgreater{} compound {\bf{AC}} +element {\bf{B}}} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{eg. Mg+FeSO₄-{}-\textgreater{}Fe+MgSO₄ because magnesium is more reactive than iron} \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{To form an {\bf{ionic equation}}, we get rid of the negative ion (spectator ion) because it is not involved in the reaction.} \tn % Row Count 12 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{eg. to form Mg + Fe2+ -{}-\textgreater{} Fe + Mg2+*} \tn % Row Count 13 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{*the 2+ is written as a little number top right of the element.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}