\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{liv.skreka} \pdfinfo{ /Title (chapter-6-polynomials.pdf) /Creator (Cheatography) /Author (liv.skreka) /Subject (Chapter 6 Polynomials Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A3A3A3} \definecolor{LightBackground}{HTML}{F3F3F3} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Chapter 6 Polynomials Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{liv.skreka} via \textcolor{DarkBackground}{\uline{cheatography.com/201997/cs/42819/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}liv.skreka \\ \uline{cheatography.com/liv-skreka} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 30th March, 2024.\\ Updated 24th March, 2024.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6A The Language of Polynomials}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/liv-skreka_1711249518_Screenshot 2024-03-24 at 1.54.20 pm copy.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{- A polynomial function is a function that can be written in the form: \newline P(x) = ax\textasciicircum{}n + ax\textasciicircum{}n-1 + ... + ax + a \newline \newline - The leading term, ax\textasciicircum{}n, of a polynomial is the term of the highest index among those terms with a non-zero coefficient.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{The function f(x)=x\textasciicircum{}1/3}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/liv-skreka_1711254417_Screenshot 2024-03-24 at 3.26.10 pm.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Inverse functions \newline f(x)=x\textasciicircum{}1/3 is the inverse of f(x)= x\textasciicircum{}3} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6E - Cubic Functions of f(x) = a(x-h)\textasciicircum{}3 + k}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/liv-skreka_1711254261_Screenshot 2024-03-24 at 3.22.20 pm.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6E - Cubic Functions of f(x) = a(x-h)\textasciicircum{}3 + k}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/liv-skreka_1711254185_Screenshot 2024-03-24 at 3.22.20 pm.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.33664 cm} x{1.00248 cm} x{1.42018 cm} p{0.4177 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{5.377cm}}{\bf\textcolor{white}{6E - Cubic Functions of f(x) = a(x-h)\textasciicircum{}3 + k}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Point of Inflection (POI)}} & {\bf{Vertical Translations}} & {\bf{Horizontal Translations}} & \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} A point of zero gradient & by adding or \seqsplit{subtracting} a constant term to y-x\textasciicircum{}3, the graph moves either up or down & The graph of y=(x-h)\textasciicircum{}3 is moved h units to the right (for h\textgreater{}0) & \tn % Row Count 13 (+ 10) % Row 2 \SetRowColor{LightBackground} The 'flat point' of the graph & e.g. y=x\textasciicircum{}3 + k moves the graph k units up (for k\textgreater{}0) & the POI is at (h,0) & \tn % Row Count 19 (+ 6) % Row 3 \SetRowColor{white} The POI of graph of y=x\textasciicircum{}3 is at (0,0) & The POI becomes (0,k) & In this case, the graph of y=x\textasciicircum{}3 is translated h units in the positive direction of the x-axis. & \tn % Row Count 27 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}----} \SetRowColor{LightBackground} \mymulticolumn{4}{x{5.377cm}}{The implied domain of all cubics is R and the range is also R} \tn \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6D - Solving Cubic Equations}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/liv-skreka_1711253707_Screenshot 2024-03-24 at 3.12.53 pm.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6D - Solving Cubic Equations}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/liv-skreka_1711253663_Screenshot 2024-03-24 at 3.12.39 pm.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{In order to solve a cubic equation, the first step is often to factorise. \newline Factorise by identifying a factor, then using polynomial division. \newline Factor the quadratic factor \newline Then, use null factor law.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6B - Division of Polynomials}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/liv-skreka_1711249811_Screenshot 2024-03-24 at 2.09.05 pm.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{- When we divide the polynomial P(x) by the polynomial D(x) we obtain two polynomials, Q(x) the quotient and R(x) the remainder, such that \newline P(x) = D(x)Q(x) + R(x) \newline and either R(x) =0 or R9x) has degree less than D(x) \newline Here P(x) is the dividend and D(x) is the divisor} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6B - Division of Polynomials}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/liv-skreka_1711250235_Screenshot 2024-03-24 at 2.16.40 pm.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Dividing Polynomials involving fractions} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6B - Division of Polynomials}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/liv-skreka_1711249939_Screenshot 2024-03-24 at 2.11.29 pm.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Dividing polynomials when we have a remainder} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6B - Division of Polynomials}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/liv-skreka_1711273312_Screenshot 2024-03-24 at 8.40.24 pm.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Equating Coefficients Methods instead of dividing} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6F - Graphs of factorised cubic functions}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/liv-skreka_1711254587_Screenshot 2024-03-24 at 3.12.39 pm.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6F - Graphs of factorised cubic functions}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/liv-skreka_1711254708_Screenshot 2024-03-24 at 3.30.32 pm.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Repeated roots/factors} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6F - Graphs of factorised cubic functions}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/liv-skreka_1711254806_Screenshot 2024-03-24 at 3.30.43 pm.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Cubic equations with one x intercept} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6G - Solving Cubic Inequalities}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/liv-skreka_1711254903_Screenshot 2024-03-24 at 3.34.29 pm.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.45947 cm} x{1.04425 cm} x{1.37841 cm} x{1.29487 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{5.377cm}}{\bf\textcolor{white}{6H - Families of cubic polynomial functions}} \tn % Row 0 \SetRowColor{LightBackground} y=ax\textasciicircum{}3 & y=a(x-h)\textasciicircum{}3 + k & \seqsplit{y=a(x-a)(x-b)(x-c)} & y=ax\textasciicircum{}3+bx\textasciicircum{}2+cx+d \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6H - Families of cubic polynomial functions}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/liv-skreka_1711255285_Screenshot 2024-03-24 at 3.38.59 pm.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6H - Families of cubic polynomial functions}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/liv-skreka_1711255331_Screenshot 2024-03-24 at 3.40.32 pm.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Quartic Functions} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6B - Division of Polynomials}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/liv-skreka_1711273587_Screenshot 2024-03-24 at 8.40.24 pm.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Equating Coefficients Methods instead of dividing} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6C - Special Cases Differences of Cubes}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/liv-skreka_1711253273_Screenshot 2024-03-24 at 3.06.42 pm.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6C - Rational Root Theorem}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/liv-skreka_1711253117_Screenshot 2024-03-24 at 2.57.01 pm.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6C - Rational Root Theorem}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{P(x) = 2x\textasciicircum{}3 - x\textasciicircum{}2 - x - 3} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Choose factors of -3, which are ±1 and ±3.} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{However, P(1) ≠ 0, P(-1) ≠ 0, P(3) ≠ 0, and P(-3) ≠ 0} \tn % Row Count 4 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Therefore, we must use the Rational Root Theorem.} \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{We must use P(± factors of constant/factors of leading coefficient)} \tn % Row Count 7 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{factors of constant (of -3) = ±1, ±3 factors leading coefficient (of 2) = ±1, ±2} \tn % Row Count 9 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{e.g. P(±3/2), P(±1/2)} \tn % Row Count 10 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{We now have to check these factors -{}-\textgreater{} P(3/2) = 2(3/2)\textasciicircum{}3 - (3/2)\textasciicircum{}2 -(3/2) -3 = 0} \tn % Row Count 12 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{therefore, x-3/2, which equates to 2x-3 as a factor} \tn % Row Count 14 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6C - Factorisation of Polynomials}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/liv-skreka_1711251912_Screenshot 2024-03-24 at 2.44.24 pm.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{For a polynomial P(x) \newline - If P(a) = 0, then x-a is a factor of P(x) \newline - Conversely, if x-a is a factor of P(x), then P(a) =0} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6C - Factorisation of Polynomials}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/liv-skreka_1711251698_Screenshot 2024-03-24 at 2.40.55 pm.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Remainder Theorem: \newline When P(x) is divided by bx+a, the remainder is P(-a/b). \newline \newline For example, if P(x) is divided by x-1, let x-1=0, x=1. \newline P(1) = Remainder (R(x)) \newline \newline For example, if P(x) is divided by 3x-2, let 3x+2=0, x=-2/3. \newline P(-2/3) = Remainder (R(x))} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6J - Applications}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/liv-skreka_1711255419_Screenshot 2024-03-24 at 3.42.57 pm.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}