Cheatography

Chapter 6 Polynomials Cheat Sheet by liv.skreka via cheatography.com/201997/cs/42819/

6A The Language of Polynomials				
Example 1				
Let $P(x) = x^4$	$-3x^3 - 2$. Find:	P(2)	d P(-2)	
Solution	• 1(-1)	• 1(2)	• 1(2)	
a $P(1) = 1^4 -$	$3 \times 1^3 - 2$	b $P(-1) = (-$	$(1)^4 - 3 \times (-1)^3 - 2$	
= 1 - 3 = -4	3-2	= 1 + = 2	- 3 - 2	
c $P(2) = 2^4 -$	$3 \times 2^3 - 2$	d P(-2) = (-	$(-2)^4 - 3 \times (-2)^3 - 2$	
= 16 -	24 – 2	= 16	+ 24 - 2	
= -10		= 38		

- A polynomial function is a function that can be written in the form:

 $P(x) = ax^n + ax^{n-1} + ... + ax + a$

- The leading term, axⁿ, of a polynomial is the term of the highest index among those terms with a non-zero coefficient.

The function $f(x)=x^{1/3}$

The function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^{\frac{1}{3}}$ The functions with rules of the form $f(x) = a(x - h)^3 + k$ are one-to-one functions. Hence each of these functions has an inverse function. The inverse function of $f(x) = x^3$ is $f^{-1}(x) = x^{\frac{1}{3}}$.

The graphs of $y = x^3$ and $y = x^{\frac{1}{3}}$ are shown above. The graphs of $y = x^{\frac{1}{3}}$ is instantaneously vertical at x = 0. The graphs of $y = x^3$ and $y = x^{\frac{1}{3}}$ intersect at (1, 1) and (-1, -1).

Inverse functions

 $f(x)=x^{1/3}$ is the inverse of f(x)=x 3

C

By liv.skreka

cheatography.com/liv-skreka/

6E - Cubic Functions of f(x) = a(x-h)^3 + k

6E - Cubic Functions of $f(x) = a(x-h)^3 + b^2$

General form

For the graph of a cubic function of the form $y = a(x - h)^3 + k$

the point of inflection is at (h, k).

6E - Cubic	Functions of f(x) = a	(x-h)^3 + k
Point of Inflection (POI)	Vertical Transl- ations	Horizontal Transl- ations
A point of zero gradient	by adding or subtracting a constant term to y-x^3, the graph moves either up or down	The graph of y=(x- h)^3 is moved h units to the right (for h>0)
The 'flat point' of the graph	e.g. y=x^3 + k moves the graph k units up (for k>0)	the POI is at (h,0)

6E - Cubic Functions of f(x) = a(x-h)^3 + k (cont) The POI The POI In this case, the

of graph	becomes	graph of y=x^3 is
of y=x^3	(0,k)	translated h units in
is at		the positive
(0,0)		direction of the x-
		axis.

The implied domain of all cubics is R and the range is also R

6D - Solving Cubic Equations

Example 17		
olve each of the following equations	for x:	
$2x^3 - x^2 - x = 0$	b $x^3 + 2$	$2x^2 - 10x = 0$
Solution		
$2x^3 - x^2 - x = 0$	b	$x^3 + 2x^2 - 10x = 0$
$x(2x^2 - x - 1) = 0$		$x(x^2 + 2x - 10) = 0$
x(2x+1)(x-1) = 0		$x(x^2 + 2x + 1 - 11) = 0$
: $x = 0$ or $x = -\frac{1}{2}$ or $x = 1$	x(x +	$1 - \sqrt{11})(x + 1 + \sqrt{11}) = 0$
	∴ x =	$= 0 \text{ or } x = -1 + \sqrt{11} \text{ or } x = -1 - \sqrt{11}$

6D - Solving Cubic Equations

Example 19	
Solve $x^3 - 4x^2 - 11x + 30 = 0$.	
Solution Let $P(x) = x^3 - 4x^2 - 11x + 30$ Then $P(1) = 1 - 4 - 11 + 30 \neq 0$ $P(-1) = -1 - 4 + 11 + 30 \neq 0$ P(2) = 8 - 16 - 22 + 30 = 0 ∴ $x - 2$ is a factor.	Explanation In this example we first identify a linear factor using the factor theorem.
By division or inspection, $x^3 - 4x^2 - 11x + 30 = (x - 2)(x^2 - 2x - 15)$ = (x - 2)(x - 5)(x + 3)	The factorisation is completed using one of the methods given in the previous section.
$\therefore (x-2)(x-5)(x+3) = 0$	
$\therefore x - 2 = 0 \text{ or } x - 5 = 0 \text{ or } x + 3 = 0$	
$\therefore x = 2, 5 \text{ or } -3$	

In order to solve a cubic equation, the first step is often to factorise. Factorise by identifying a factor, then using polynomial division. Factor the quadratic factor

Then, use null factor law.

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours!

https://apollopad.com

Published 30th March, 2024. Last updated 24th March, 2024. Page 1 of 4.

Cheatography

Chapter 6 Polynomials Cheat Sheet by liv.skreka via cheatography.com/201997/cs/42819/

Example 5 Divide $x^3 + x^2 - 14x - 24$ by	(x+2.
$ \frac{x^2 - x - 12}{x^2 + x^2 - 14x - 24} \\ \frac{x^3 + 2x^2}{-x^2 - 14x - 24} \\ \frac{-x^2 - 2x}{-12x - 24} \\ \frac{-12x - 24}{0} $	Explanation Divide x, from x + 2, into the leading term x ³ to get x ² . Multiply x ² by x + 2 to give x ³ + 2x ² . Subtract from x ³ + x ² - 14x - 24, leaving $-x^2 - 14x - 24$. Now divide x, from x + 2 to give $-x^2$ to get $-x$. Multiply x by x + 2 to give $-x^2 - 2x$. Subtract from $-x^2 - 14x - 24$, leaving $-12x - 24$. Divide x into $-12x$ to get -12 . Multiply -12 by x + 2 to give $-12x - 24$. Subtract from $-12x - 24$, leaving remainder of 0.
In this example we see that $x + x^2$ Thus $(x^3 + x^2 - 14x - 24) \div (x)$ $\therefore \frac{x^3 + x^2 - 14x - 24}{x + 2} = x^2$	+ 2 is a factor of $x^3 + x^2 - 14x - 24$, as the remainder is zero. $x + 2) = x^2 - x - 12$ with zero remainder. $x^2 - x - 12$

- When we divide the polynomial P(x) by the polynomial D(x) we obtain two polynomials,

Q(x) the quotient and R(x) the remainder, such that

P(x) = D(x)Q(x) + R(x)

and either R(x) = 0 or R9x) has degree less than D(x)

Here P(x) is the dividend and D(x) is the divisor

Dividing Polynomials involving fractions

6B - Division of Polynomials

Dividing polynomials when we have a remainder

6B - Division of Polynomials

Equating coefficients to divide

We will briefly outline how to carry out divisions by equating coefficients as shown in the first section of this shape. To divide $x^3 - 7x^2 + 5x - 4$ by x - 3, first write the identity $x^3 - 7x^2 + 5x - 4 = (x - 3)(x^2 + bx + c) + r$ We first find *b*, then *c* and finally *r* by equating coefficients of the left-hand side and right-hand side identity. x^2 term Left-hand side: $-7x^2$, Right-hand side: $-3x^2 + bx^2 = (-3 + b)x^2$, Therefore -3 + b = -7. Hence b = -4. **x term** Left-hand side: 5x. Right-hand side: 12x + cx = (12 + c)x. Therefore 12 + c = 5. Hence c = -7. **constant term** Left-hand side: $-1x^2$, Right-hand side: 21 + r. Therefore 12 + c = 5. Hence r = -25. So we can write $x^3 - 7x^2 + 5x - 4 = (x - 3)(x^2 - 4x - 7) - 25$

Equating Coefficients Methods instead of dividing

6F - Graphs of factorised cubic functions			
Example 19 Solve $x^3 - 4x^2 - 11x + 30 = 0$.			
Solution Let $P(x) = x^2 - 4x^2 - 11x + 30$ Then $P(1) = 1 - 4 - 11 + 30 \neq 0$ $P(-1) = -1 - 4 + 11 + 30 \neq 0$ P(2) = 8 - 16 - 22 + 30 = 0 $\therefore x - 2$ is a factor.	Explanation In this example we first identify a linear factor using the factor theorem.		
By division or inspection, $x^3 - 4x^2 - 11x + 30 = (x - 2)(x^2 - 2x - 15)$ = (x - 2)(x - 5)(x + 3) ∴ $(x - 2)(x - 5)(x + 3) = 0$	The factorisation is completed using one of the methods given in the previous section.		
$\therefore x - 2 = 0 \text{ or } x - 5 = 0 \text{ or } x + 3 = 0$ $\therefore x = 2, 5 \text{ or } -3$			

By liv.skreka cheatography.com/liv-skreka/ Published 30th March, 2024. Last updated 24th March, 2024. Page 2 of 4.

6F - Graphs of factorised cubic functions

Repeated factors

Repeated roots/factors

6F - Graphs of factorised cubic functions

Cubics with one x-axis intercept

Cubics of the form $y = (x - a)^3$ have only one x-axis intercept. Some other cubics also have only one x-axis intercept because, when they are factorised, they are found to have only one linear factor, with the remaining quadratic factor unable to be factorised further.

Example 27

Cubic equations with one x intercept

6G - Solving Cubic Inequalities

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Cheatography

Chapter 6 Polynomials Cheat Sheet
by liv.skreka via cheatography.com/201997/cs/42819

6H - Families of cubic polynomial functions			
y=ax^3	y=a(x-	y=a(x-a)	y=ax^3-
	h)^3 +	(x-b)(x-c)	+bx-
	k		^2+cx+d

By liv.skreka

cheatography.com/liv-skreka/

6B - Division of Polynomials

ple 14 Exa

Let $P(x) = x^3 - 27$

Thus x = 3 is a factor.

Then P(3) = 27 - 27 = 0

Divide to find the other factor:

 $x-3)\frac{x^2+3x+9}{x^3+0x^2+0x-27}$ $\frac{x^3-3x^2}{3x^2+0x-27}$

 $\frac{3x^2 - 9x}{9x - 27}$

9x - 27

Factorise $x^3 - 27$.

Solution

Henc

Equating coefficients to divide			
We will briefly outline how to carry out divisions by equating coefficients as shown in the first section of this chapter.			
To divide $x^3 - 7$	$x^2 + 5x - 4$ by $x - 3$, first write the identity		
$x^3 - 7x^2$	$+5x - 4 = (x - 3)(x^{2} + bx + c) + r$		
We first find b, t right-hand side of	hen c and finally r by equating coefficients of the left-hand side and of this identity.		
x ² term	Left-hand side: $-7x^2$. Right-hand side: $-3x^2 + bx^2 = (-3 + b)x^2$. Therefore $-3 + b = -7$. Hence $b = -4$.		
x term	Left-hand side: 5x. Right-hand side: $12x + cx = (12 + c)x$. Therefore $12 + c = 5$. Hence $c = -7$.		
constant term	Left-hand side: -4 . Right-hand side: $21 + r$. Therefore $21 + r = -4$. Hence $r = -25$.		
So we can write			
$x^3 - 7x^2$	$+5x - 4 = (x - 3)(x^2 - 4x - 7) - 25$		
Equating	Coefficients Methods instead of		
dividing			
6C - Spe	cial Cases Differences of Cubes		

Alternative The division can also be performed using the method of equating coefficients. Let $x^3 - 27 = (x - 3)(x^2 + bx + c)$. Equating constant terms gives c = 9. Equating coefficients of x^2 gives -3 + b = 0, and so b = 3. Hence $x^3 - 27 = (x - 3)(x^2 + 3x + 9)$. $x^3 - 27 = (x - 3)(x^2 + 3x + 9)$ 6C - Rational Root Theorem

Example 13 Factorise $P(x) = 3x^3 + 8x^2 + 2x - 5$. Explanation Solutio The only possible integer solutions are ± 5 or ± 1 . So there are no integer solutions. We now use the rational-root theorem. $P(1) = 8 \neq 0,$ $P(-1) = -2 \neq 0,$ $P(5) = 580 \neq 0, \qquad P(-5) = -190 \neq 0,$ $P\left(-\frac{5}{3}\right) = 0$ If $-\frac{\alpha}{\beta}$ is a solution, the only value of β Therefore 3x + 5 is a factor. eds to be considered is 3 and that Dividing gives $\alpha = \pm 5$ or $\alpha = \pm 1$. $P(x) = 3x^3 + 8x^2 + 2x - 5$ $= (3x+5)(x^2+x-1)$ We complete the square for $x^2 + x - 1$ to factorise: $x^2 + x - 1 = x^2 + x + \frac{1}{4} - \frac{1}{4} - 1$ $=\left(x+\frac{1}{2}\right)^{2}-\frac{5}{4}$ $=\left(x+\frac{1}{2}+\frac{\sqrt{5}}{2}\right)\left(x+\frac{1}{2}-\frac{\sqrt{5}}{2}\right)$ Hence $P(x) = (3x + 5)\left(x + \frac{1}{2} + \frac{\sqrt{5}}{2}\right)\left(x + \frac{1}{2} - \frac{\sqrt{5}}{2}\right)$

Published 30th March, 2024. Last updated 24th March, 2024. Page 3 of 4.

6C - Rational Root Theorem

$P(x) = 2x^{3-x}2 - x - 3$

Choose factors of -3, which are ±1 and ±3.

However, $P(1) \neq 0$, $P(-1) \neq 0$, $P(3) \neq 0$, and P(-3) ≠ 0

Therefore, we must use the Rational Root Theorem.

We must use P(± factors of constant/factors of leading coefficient)

factors of constant (of -3) = ± 1 , ± 3 factors leading coefficient (of 2) = $\pm 1, \pm 2$

e.g. P(±3/2), P(±1/2)

We now have to check these factors --> $P(3/2) = 2(3/2)^{3 - (3/2)} 2 - (3/2) - 3 = 0$

therefore, x-3/2, which equates to 2x-3 as a factor

6C - Factorisation of Polynomials

```
Example 12
 Factorise x^3 - 2x^2 - 5x + 6.
 Solution
P(1) = 1 - 2 - 5 + 6 = 0
  \therefore x - 1 is a factor.
 Now divide to find the other factors:
        \begin{array}{r} x^2 - x - 6 \\ x - 1 \overline{\smash{\big)} x^3 - 2x^2 - 5x + 6} \end{array} 
                  \frac{x^3 - 2x^2 - 5x + 6}{-x^2 - 5x + 6}
                        -x^{2} + x
                                -6x + 6
                               -6x + 6
  \therefore x^3 - 2x^2 - 5x + 6 = (x - 1)(x^2 - x - 6)
                              = (x-1)(x-3)(x+2)
```

For a polynomial P(x)

P(a) = 0

Explanation The factors of 6 are $\pm 1, \pm 2, \pm 3, \pm 6$.

We evaluate the first option, P(1), which in fact equals 0. If P(1) did not equal 0, we would try the other factors of 6 in turn until a zero result is found.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours!

- If P(a) = 0, then x-a is a factor of P(x)

- Conversely, if x-a is a factor of P(x), then

https://apollopad.com

Chapter 6 Polynomials Cheat Sheet by liv.skreka via cheatography.com/201997/cs/42819/

6C - Factorisation of Polynomials			
Example 9 Use the remainder theorem to find the value of the remainder when: a $P(x) = x^3 - 3x^2 + 2x + 6$ is divided by $x - 2$ b $P(x) = x^3 - 2x + 4$ is divided by $2x + 1$.			
Solution	Explanation		
a $P(2) = (2)^3 - 3(2)^2 + 2(2) + 6$ = 8 = 12 + 4 + 6 = 6 The remainder is 6. b $P(-\frac{1}{2}) = (-\frac{1}{2})^3 - 2(-\frac{1}{2}) + 4$ = $-\frac{1}{4} + 1 + 4$	We apply the remainder theorem by evaluating $P(2)$. We apply the remainder theorem by evaluating $P(-\frac{1}{2})$.		
$= \frac{39}{8}$ The remainder is $\frac{39}{8}$.			
Example 10 When $P(x) = x^3 + 2x + a$ is divided by $x - 2$, the remainder is 4. Find the value of a .			
Solution P(2) = 8 + 4 + a = 4 Therefore $a = -8$.	Explanation We apply the remainder theorem to form a linear equation in <i>a</i> .		

Remainder Theorem:

When P(x) is divided by bx+a, the remainder is P(-a/b).

For example, if P(x) is divided by x-1, let x-1=0, x=1. P(1) = Remainder (R(x))

For example, if P(x) is divided by 3x-2, let 3x+2=0, x=-2/3. P(-2/3) = Remainder (R(x))

6J - Applications

Example 37

A square sheet of tin measures 12 cm \times 12 cm. Four equal squares of edge x cm are cut out of the corners and the sides are turned up to form an open rectangular box. Find: a the values of x for which the volume is 100 cm³ b the maximum volume.

Solution The figure shows how it is possible to form many open rectangular boxes with dimensions 12 - 2x, 12 - 2x and x. The volume of the box is

 $V = x(12 - 2x)^2, \quad 0 \le x \le 6$ which is a cubic model. We complete the solution using a CAS calculator as follows.

By liv.skreka

cheatography.com/liv-skreka/

Published 30th March, 2024. Last updated 24th March, 2024. Page 4 of 4. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com