6A The Language of Polynomials

Example 1	
$\begin{aligned} & \text { Let } P(x)=x^{4}-3 x^{3}-2 \text {. Find: } \\ & \begin{array}{ll} \text { a } P(1) & \text { b } P(-1) \end{array} \end{aligned}$	c $P(2) \quad$ d $P(-2)$
Solution $\text { a } \begin{aligned} P(1) & =1^{4}-3 \times 1^{3}-2 \\ & =1-3-2 \\ & =-4 \end{aligned}$	$\begin{aligned} P(-1) & =(-1)^{4}-3 \times(-1)^{3}-2 \\ & =1+3-2 \\ & =2 \end{aligned}$
$\text { c } \begin{aligned} P(2) & =2^{4}-3 \times 2^{3}-2 \\ & =16-24-2 \\ & =-10 \end{aligned}$	$\text { d } \begin{aligned} P(-2) & =(-2)^{4}-3 \times(-2)^{3}-2 \\ & =16+24-2 \\ & =38 \end{aligned}$

- A polynomial function is a function that can be written in the form:
$P(x)=a x^{\wedge} n+a x^{\wedge} n-1+\ldots+a x+a$
- The leading term, $a x^{\wedge} n$, of a polynomial is the term of the highest index among those terms with a non-zero coefficient.

The function $f(x)=x^{\wedge} 1 / 3$

Inverse functions
$f(x)=x^{1 / 3}$ is the inverse of $f(x)=x_{3}$

6E-Cubic Functions of $f(x)=a(x-h)^{\wedge} 3+k$

$6 \mathrm{E}-$ Cubic Functions of $\mathrm{f}(\mathrm{x})=\mathrm{a}(\mathrm{x}-\mathrm{h})^{\wedge} 3+\mathrm{k}$

```
3eneral form
For the graph of a cubic function of the form
    y=a(x-h\mp@subsup{)}{}{3}+k
    the point of inflection is at (h,k).
```

6E - Cubic Functions of $f(x)=a(x-h)^{\wedge} 3+k$		
Point of Inflection (POI)	Vertical Translations	Horizontal Translations
A point of zero gradient	by adding or subtracting a constant term to $y-x^{\wedge} 3$, the graph moves either up or down	The graph of $y=(x-$ h) ${ }^{\wedge} 3$ is moved h units to the right (for $h>0$)
The 'flat point' of the graph	e.g. $y=x^{\wedge} 3+k$ moves the graph k units up (for $k>0$)	the POI is at $(\mathrm{h}, 0)$

Published 30th March, 2024.
Last updated 24th March, 2024.
Page 1 of 4 .

6E - Cubic Functions of $f(x)=a(x-h)^{\wedge} 3+k$ (cont)

The POI	The POI	In this case, the
of graph	becomes	graph of $y=x^{\wedge} 3$ is
of $y=x^{\wedge} 3$	$(0, k)$	translated h units in is at
$(0,0)$ the positive direction of the $x-$ axis.		

The implied domain of all cubics is R and the range is also R

6D - Solving Cubic Equations
 Example 17

6D - Solving Cubic Equations

Example 19	
Solve $x^{3}-4 x^{2}-11 x+30=0$.	
Solution $\begin{aligned} & \text { Let } \begin{aligned} P(x) & =x^{3}-4 x^{2}-11 x+30 \\ \text { Then } P(1) & =1-4-11+30 \neq 0 \\ P(-1) & =-1-4+11+30 \neq 0 \\ P(2) & =8-16-22+30=0 \end{aligned} \end{aligned}$ $\therefore x-2$ is a factor. By division or inspection, $\begin{aligned} x^{3}-4 x^{2}-11 x+30=(x-2)\left(x^{2}-2 x-15\right) \\ =(x-2)(x-5)(x+3) \\ :(x-2)(x-5)(x+3)=0 \\ x-2=0 \text { or } x-5=0 \text { or } x+3=0 \end{aligned}$	Explanation In this example we first identify a linear factor using the factor theorem. The factorisation is completed using one of the methods given in the previous section
In order to solve a cubic step is often to factorise. Factorise by identifying a polynomial division. Factor the quadratic facto Then, use null factor law	quation, the first factor, then using

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours!
https://apollopad.com

6B - Division of Polynomials

Example 5

Divide $x^{3}+x^{2}-14 x-24$ by $x+2$
Explanation

- Divide x, from $x+2$, into the leading term x^{3} to get x^{2}
$\frac{x^{2}-x-12}{x^{3}+x^{2}}$
+2) $x^{3}+x^{2}-14 x-24$
$\frac{x^{3}+2 x^{2}}{-x^{2}}$
Subtract $x^{\text {b }}$ by $x+2$ to give $x^{3}+2 x^{2}$.
- Now divide $x^{3}+x^{2}-14 x-24$, leaving
- Multiply $-x$, from $x+2$, into $-x^{2}$ to get
- Subtract from $-x^{2}-14 x-24$, leaving $-12 x-24$.
${ }_{-12 x-24}^{-12 x-24}$ Divide x into $-12 x$ to get -12 .
- Multiply -12 by $x+2$ to give $-12 x-24$.
- Subtract from $-12 x-24$, leaving remainder of 0 .

In this example we see that $x+2$ is a factor of $x^{3}+x^{2}-14 x-24$, as the remainder is zero.
Thus $\left(x^{3}+x^{2}-14 x-24\right) \div(x+2)=x^{2}-x-12$ with zero remainder.

$$
\frac{x^{3}+x^{2}-14 x-24}{x+2}=x^{2}-x-12
$$

- When we divide the polynomial $P(x)$ by the polynomial $D(x)$ we obtain two polynomials, $Q(x)$ the quotient and $R(x)$ the remainder, such that
$P(x)=D(x) Q(x)+R(x)$
and either $R(x)=0$ or $R 9 x$) has degree less than $D(x)$
Here $P(x)$ is the dividend and $D(x)$ is the divisor

6B - Division of Polynomials

b $x^{3}-3 x^{2}+1,3 x-1$

$$
\frac{1}{3} x^{2}-\frac{8}{9} x-\frac{8}{27}+\frac{19}{27(3 x-1)}
$$

b $3 x - 1 \longdiv { x ^ { 3 } - 3 x ^ { 2 } + 0 x + 1 }$

$$
x^{3}-\frac{1}{3} x^{2}
$$

$$
-\frac{8}{3} x^{2}+0 x
$$

$$
-\frac{8}{3} x^{2}+\frac{8}{9} x
$$

$$
-\frac{8}{9} x+1
$$

$$
\frac{-\frac{8}{9} x+\frac{8}{27}}{\frac{19}{27}}
$$

Dividing Polynomials involving fractions

By liv.skreka

cheatography.com/liv-skreka/

6B - Division of Polynomials

Example 6	
Divide $3 x^{3}+x-3$ by $x-2$.	
Solution	Explanation
$3 x^{2}+6 x+13$	Here there is no term in x^{2}, however we can rewrite the
$\begin{aligned} & x - 2 \longdiv { 3 x ^ { 3 } + 0 x ^ { 2 } + x - 3 } \\ & 3 x^{3}-6 x^{2} \end{aligned}$	polynomial as $3 x^{3}+0 x^{2}+x-3$.
	- Divide x, from $x-2$, into $3 x^{3}$ to get $3 x^{2}$.
$6 x^{2}+x-3$	- Multiply $3 x^{2}$ by $x-2$ to give $3 x^{3}-6 x^{2}$.
$6 x^{2}-12 x$	- Subract from $3 x^{3}+0 x^{2}+x-3$, leaving $6 x^{2}+x-3$.
$13 x-3$	- Now divide x, from $x-2$, into $6 x^{2}$ to get $6 x$.
$13 x-26$	- Multiply $6 x$ by $x-2$ to give $6 x^{2}-12 x$.
23	- Subtract from $6 x^{2}+x-3$, leaving $13 x-3$.
	- Divide x into $13 x$ to get 13 .
	- Multiply 13 by $x-2$ to give $13 x-26$.
	- Subtract from $13 x-3$, leaving remainder of 23 .

[^0]$3 x^{3}+x-3=(x-2)\left(3 x^{2}+6 x+13\right)+2$
Iternatively, we can write
$\frac{3 x^{3}+x-3}{x-2}=3 x^{2}+6 x+13+\frac{23}{x-2}$

Dividing polynomials when we have a remainder

6B - Division of Polynomials

Equating coefficients to divide

We will briefly outline how to carry out divisions by equating coefficients as shown in the
first section of this chapter.
To divide $x^{3}-7 x^{2}+5 x-4$ by $x-3$, first write the identity
$x^{3}-7 x^{2}+5 x-4=(x-3)\left(x^{2}+b x+c\right)+r$
We first find b, then c and finally r by equating coefficients of the left-hand side and right-hand side of this identity.
x^{2} term Left-hand side: $-7 x^{2}$. Right-hand side: $-3 x^{2}+b x^{2}=(-3+b) x^{2}$. Left-hand side: $-7 x^{2}$. Right-hand side:
Therefore $-3+b=-7$. Hence $b=-4$.
x term Left-hand side: $5 x$. Right-hand side: $12 x+c x=(12+c)$ Therefore $12+c=5$. Hence $c=-7$.
constant term Left-hand side: -4 . Right-hand side: $21+r$. Therefore $21+r=-4$. Hence $r=-25$.
So we can write
$x^{3}-7 x^{2}+5 x-4=(x-3)\left(x^{2}-4 x-7\right)-25$

Equating Coefficients Methods instead of dividing

> 6F - Graphs of factorised cubic functions

Published 30th March, 2024.
Last updated 24th March, 2024.
Page 2 of 4 .

6F - Graphs of factorised cubic functions

Repeated factors

The polynomial function $f(x)=(x-1)^{2}(x+3)$ has a repeated factor. In this case $x-1$ is repeated. Since the repeated factor is squared, it is easy to see that the sign of the y-value is e same 'close in' on either side of the corresponding x-axis intercep.
If the factorised cubic has a repeated factor and another linear factor, there are only tw
axis intercepts and

Example 26

Sketch the graph of $y=x^{2}(x-1)$
Solution
To find the x-axis intercepts, let $y=0$.
Then $x^{2}(x-1)=0$.
Thus the x-axis intercepts are at $x=0$ and $x=1$.
Because the repeated factor is x^{2}, there is also a turning
point at $x=0$.
The y-axis intercept $($ letting $x=0)$ is at $y=0$.

Repeated roots/factors

6F - Graphs of factorised cubic functions

Cubics with one x-axis intercept
 Cubics of the form $y=(x-a)^{3}$ have only one x-axis intercept. Some other cubics also have only one x-axis intercept because, when they are factorised, they are found to have only one linear factor, with the remaining quadratic factor unable to be factorised further.
 Example 27
 Sketch the graph of $y=-(x-1)\left(x^{2}+4 x+5\right)$.
 Solution
 To find the x-axis intercept, let $y=0$.
 First, we note that the factor $x^{2}+4 x+5$ cannot
 be factorised further:
 $\Delta=b^{2}-4 a c$
 $=4^{2}-4(1)(3)$
 re are no further linear factors.

Hence, when solving the equation $-(x-1)\left(x^{2}+4 x+5\right)=0$, there is only one solution. $\therefore x$-axis intercept is $x=1$.
To find the y-axis intercept, let $x=0$. Then $y=-(0-1)\left(0^{2}+4(0)+5\right)=5$.
A CAS calculator can be used to find the turring points $(0,5)$ and $(-1.82,2.91)$, where the coordinates of the second point are given to two decimal places.

Cubic equations with one x intercept

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours!
https://apollopad.com

6 H - Families of cubic polynomial functions

$y=a x^{\wedge} 3$	$y=a(x-$	$y=a(x-a)$	$y=a x^{\wedge} 3-$
	$h)^{\wedge} 3+$	$(x-b)(x-c)$	$+b x-$
	k		${ }^{\wedge} 2+c x+d$

6H - Families of cubic polynomial functions

Example 31	
Determine the rule for the cubic function shown in each of the following graphs:	
Solution a $y=a(x+1)(x-2)^{2}$ Put $(3,2)$ into the equation: $2=a(4)(1)$ $\frac{1}{2}=a$ The rule is $y=\frac{1}{2}(x+1)(x-2)^{2}$. b $y=a(x+1)^{3}+2$ To determine a, put the known point $(1,-2)$ into the equation: $\begin{aligned} -2 & =a(2)^{3}+2 \\ -4 & =8 a \\ -\frac{1}{2} & =a \end{aligned}$ The rule is $y=-\frac{1}{2}(x+1)^{3}+2$.	Explanation The x-axis intercepts are -1 and 2 , and the graph touches the x-axis at 2 . So the cubic has a repeated factor $x-2$. Therefore the form of the rule appears to be $y=a(x+1)(x-2)^{2}$. This graph appears to be of the form $y=a(x-h)^{3}+k$. The point of inflection is at $(-1,2)$. Therefore $h=-1$ and $k=2$.

6H - Families of cubic polynomial functions

Quartic Functions

6B - Division of Polynomials

```
Equating coefficients to divide
We will briefly outline how to carry out divisions by equating coefficients as shown in the
first section of this chapter.
To divide \mp@subsup{x}{}{3}-7\mp@subsup{x}{}{2}+5x-4 by x-3,first write the identity
    \mp@subsup{x}{}{3}-7\mp@subsup{x}{}{2}+5x-4=(x-3)(\mp@subsup{x}{}{2}+bx+c)+r
We first find b, then cand finally r by equating coefficients of the left-hand side and
right-hand side of this identity.
x term Left-hand side: }-7\mp@subsup{x}{}{2}\mathrm{ . Right-hand side: - }-3\mp@subsup{x}{}{2}+b\mp@subsup{x}{}{2}=(-3+b)\mp@subsup{x}{}{2}\mathrm{ .
        Therefore -3+b=-7. Hence b=-4.
x term Left-hand side: 5x. Right-hand side: 12x+cx=(12+c)x
        Leff-hand side: 5x. Right-hand side: 12
constant term Left-hand side: -4. Right-hand side: 21+r.
        Therefore 21 +r=-4. Hencer=-25.
So we can write
    \mp@subsup{x}{}{3}-7\mp@subsup{x}{}{2}+5x-4=(x-3)(\mp@subsup{x}{}{2}-4x-7)-25
```

Equating Coefficients Methods instead of dividing

6C - Special Cases Differences of Cubes

Example 14	
Factorise $x^{3}-27$.	
Solution	Alternative
Let $\quad P(x)=x^{3}-27$	The division can also be performed using the method of equating coefficients.
Then $P(3)=27-27=0$	
Thus $x-3$ is a factor.	Let $x^{3}-27=(x-3)\left(x^{2}+b x+c\right)$. Equating constant terms gives $c=9$.
Divide to find the other factor:	
$x^{2}+3 x+9$	Equating coefficients of x^{2} gives $-3+b=0$, and so $b=3$. Hence $x^{3}-27=(x-3)\left(x^{2}+3 x+9\right)$.
$x - 3 \longdiv { x ^ { 3 } + 0 x ^ { 2 } + 0 x - 2 7 }$	
$x^{3}-3 x^{2}$	
$3 x^{2}+0 x-27$	
$3 x^{2}-9 x$	
$9 x-27$	
9x-27	
0	
Hence	
$x^{3}-27=(x-3)\left(x^{2}+3 x+9\right)$	

6C - Rational Root Theorem

Published 30th March, 2024.
Last updated 24th March, 2024.
Page 3 of 4 .

6C - Rational Root Theorem

$P(x)=2 x^{3-x} 2-x-3$
Choose factors of -3 , which are ± 1 and ± 3.
However, $\mathrm{P}(1) \neq 0, \mathrm{P}(-1) \neq 0, \mathrm{P}(3) \neq 0$, and $\mathrm{P}(-3) \neq 0$

Therefore, we must use the Rational Root Theorem.

We must use $\mathrm{P}(\pm$ factors of constant/factors of leading coefficient)
factors of constant (of -3) $= \pm 1, \pm 3$ factors leading coefficient (of 2) $= \pm 1, \pm 2$
e.g. $P(\pm 3 / 2), P(\pm 1 / 2)$

We now have to check these factors -->
$P(3 / 2)=2(3 / 2)^{3-(3 / 2)} 2-(3 / 2)-3=0$
therefore, $x-3 / 2$, which equates to $2 x-3$ as a factor

6C - Factorisation of Polynomials

Example 12

Factorise $x^{3}-2 x^{2}-5 x+6$.

Solution
$P(1)=1-2-5+6=0$
$\therefore x-1$ is a factor.
Now divide to find the other factors:
Explanation
The factors of 6 are $\pm 1, \pm 2, \pm 3, \pm 6$. We evaluate the first option, $P(1)$, which We evaluate the first option, $P(1)$, which
in fact equals 0 . If $P(1)$ did not equal 0 , in fact equals 0 . If $P(1)$ did not equal 0 ,
we would try the other factors of 6 in turn until a zero result is found.

$$
x^{3}-2 x^{2}-5 x+6=(x-1)\left(x^{2}-x-6\right)
$$

$$
=(x-1)(x-3)(x+2)
$$

For a polynomial $\mathrm{P}(\mathrm{x})$

- If $P(a)=0$, then $x-a$ is a factor of $P(x)$
- Conversely, if x-a is a factor of $P(x)$, then
$P(a)=0$

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish
Yours!
https://apollopad.com

6C - Factorisation of Polynomials	
Bxalupley	
Use the remainder theorem to find the value of the remainder when: a $P(x)=x^{3}-3 x^{2}+2 x+6$ is divided by $x-2$ b $P(x)=x^{3}-2 x+4$ is divided by $2 x+1$.	
Solution $\begin{aligned} P(2) & =(2)^{3}-3(2)^{2}+2(2)+6 \\ & =8-12+4+6 \\ & =6 \end{aligned}$ The remainder is 6 . b $\begin{aligned} P\left(-\frac{1}{2}\right) & =\left(-\frac{1}{2}\right)^{3}-2\left(-\frac{1}{2}\right)+4 \\ & =-\frac{1}{8}+1+4 \\ & =\frac{39}{8} \end{aligned}$ The remainder is $\frac{39}{8}$.	Explanation We apply the remainder theorem by evaluating $P(2)$. We apply the remainder theorem by evaluating $P\left(-\frac{1}{2}\right)$.
Example 10	
When $P(x)=x^{3}+2 x+a$ is divided by $x-2$, the remainder is 4 . Find the value of a.	
Solution $\begin{aligned} & P(2)=8+4+a=4 \\ & \text { Therefore } a=-8 . \end{aligned}$	Explanation We apply the remainder theorem to form a linear equation in a.

Remainder Theorem:
When $P(x)$ is divided by $b x+a$, the remainder is $\mathrm{P}(-\mathrm{a} / \mathrm{b})$.

For example, if $P(x)$ is divided by $x-1$, let $x-$ $1=0, x=1$.
$P(1)=$ Remainder $(R(x))$

For example, if $P(x)$ is divided by $3 x-2$, let $3 x+2=0, x=-2 / 3$.
$P(-2 / 3)=$ Remainder $(R(x))$
6J - Applications
Example 37
A square sheet of tin measures $12 \mathrm{~cm} \times 12 \mathrm{~cm}$.
Four equal squares of edge $x \mathrm{~cm}$ are cut out of the
corners and the sides are turned up to form an open
rectangular box. Find:
a the values of x for which the volume is $100 \mathrm{~cm}^{3}$
b the maximum volume.
Solution
The figure shows how it is possible to form many
open rectangular boxes with dimensions $12-2 x$,
$12-2 x$ and x.
The volume of the box is
$V=x(12-2 x)^{2}, 0 \leq x \leq 6$
which is a cubic model.
We complete the solution using a CAS calculator as follows.

By liv.skreka

cheatography.com/liv-skreka/

Published 30th March, 2024.

Last updated 24th March, 2024.
Page 4 of 4 .

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish
Yours!
https://apollopad.com

[^0]: From this example, we have

