	4 - Rectangular Hyperbolas
	Brie Summary Asympocts act hec linesy $y=k$ and $x=h \quad y=\frac{a}{x-h}+k$
	This is the standard form of a rectangular hyperbola: a dilates the graph if the graph is negative, it is reflected along the x axis. h moves the graph left and right (along x axis) k moves the graph up and down (along y axis) To find asymptotes, $\mathrm{y}=\mathrm{k}$, horizontal asymptote $\mathrm{x}=\mathrm{h}$ vertical asymptote (or set $\mathrm{x}-\mathrm{h}=0$, and

4A - Sketching Rectangular Hyperbolas

Sketching rectangular hyperbolas
Using dilations, reflections and translations, we are now able to sketch the graphs of all
rectangular hyperbolas of the form $y=\frac{a}{x-h}+k$.

Example 1

Sketch the graph of $y=\frac{2}{x+1}-3$.

> Explanation
> The graph of $y=\frac{2}{x}$ has been translated 1 unit to
> the left and 3 units down. The asymptotes have
> equations $x=-1$ and $y=-3$.
> When $x=0, y=\frac{2}{0+1}-3=-1$.
> \therefore the y-axis intercept is -1 .
> When $y=0$

> $$
> \begin{aligned} 0 & =\frac{2}{x+1}-3 \\ 3 & =\frac{2}{x+1} \\ 3(x+1) & =2 \\ x & =-\frac{1}{3}\end{aligned}
>
$$

> \therefore the x-axis intercept is $-\frac{1}{3}$.

First sketch the graph along asymptotes to visual whether there is a x and/or y intercept.
Then solve for x and/or y intercept and label.

4A - Rearranging Form of Rectangular Hyperbolas.

First, place the denominators also as the numerator.
Then, use an appropriate coefficient outside brackets to expand to the correct x value.
Once expanded, select an appropriate number to equate to the constant. Seperate the constant over its own fraction, and cancel out the numerator and denominator.

7D - Determining Transformations

Not published yet.
Last updated 13th May, 2024.
Page 1 of 4 .

7C - Function Notation and Transformations

Mapping	Rule	The graph of $y=f(x)$ maps to
Reflection in the x-axis	$(x, y) \rightarrow(x,-y)$	$y=-f(x)$
Reflection in the y-axis	$(x, y) \rightarrow(-x, y)$	$y=f(-x)$
Dilation of factor a from the y-axis	$(x, y) \rightarrow(a x, y)$	$y=f\left(\frac{x}{a}\right)$
Dilation of factor b from the x-axis	$(x, y) \rightarrow(x, b y)$	$y=b f(x)$
Translation of h units in the positive direction of the e-xxis and k units in the positive direction of the y-axis	$(x, y) \rightarrow(x+h, y+k)$	$y-k=f(x-h)$
Reflection in the line $y=x$	$(x, y) \rightarrow(y, x)$	$x=f(y)$

7C- Combinations of Transformations

NOTE: the order in which the transformations are applied are very important as above, use brackets to follow order of operations.

$7 B$ - Dilations and Reflections

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish
Yours!
https://apollopad.com

Chapter 4, 5, 7 - AOS 3 Functions and Relations Cheat Sheet by liv.skreka via cheatography.com/201997/cs/43375/

```
7A - Translations
A transation of }h\mathrm{ units in the positive direction of the }x\mathrm{ -xisi and k units in the positive direccion of the }y\mathrm{ -axis s
dy.
```



```
A translation of }h\mathrm{ units in the positive direction of the }x\mathrm{ -axis and }k\mathrm{ units in the positive
direction of the y-axis is described by the rule
    (x,y)->(x+h,y+k)
or }\mp@subsup{x}{}{\prime}=x+h\mathrm{ and }\mp@subsup{y}{}{\prime}=y+
where}h\mathrm{ and }k\mathrm{ are positive numbers.
A translation of }h\mathrm{ units in the negative direction of the }x\mathrm{ -axis and }k\mathrm{ units in the negative
Airection of the y-axis is described by the nule
    (x,y)->(x-h,y-k)
or }\mp@subsup{x}{}{\prime}=x-h\mathrm{ and }\mp@subsup{y}{}{\prime}=y-
where }h\mathrm{ and }k\mathrm{ are positive numbers.
Example 1
Find the equation for the image of the curve with equation }y=f(x)\mathrm{ , where }f(x)=
Find the equation for mits in the positive direction of the x-axis and 2 units in the negative
under a translation 3
direction of the y-xxis.
Solution Explanation
Let (\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime})\mathrm{ be the image of the point (x,y),}
where (x,y) is a point on the graph of }y=f(x
Then }\mp@subsup{x}{}{\prime}=x+3\mathrm{ and }\mp@subsup{y}{}{\prime}=y-2
The graph of }y=f(x)\mathrm{ is mapped to the graph of Substitute }x=\mp@subsup{x}{}{\prime}-3\mathrm{ and
\mp@subsup{y}{}{\prime}+2=f(\mp@subsup{x}{}{\prime}-3)\quady=\mp@subsup{y}{}{\prime}+2\mathrm{ into }y=f(x).
i.e. }y=\frac{1}{x}\mathrm{ is mapped to
    y'}+2=\frac{1}{\mp@subsup{x}{}{\prime}-3
```


4B-The Truncus

Brief Summary
\qquad $y=\frac{a}{(x-h)^{2}}+k$

This is the standard form of a truncus:
a dilates the graph
if the graph is negative, it is reflected along the x axis.
h moves the graph left and right (along x axis)
k moves the graph up and down (along y axis)
To find asymptotes,
$y=k$, horizontal asymptote
$\mathrm{x}=\mathrm{h}$ vertical asymptote (or set $\mathrm{x}-\mathrm{h}=0$, and solve for x).

By liv.skreka
cheatography.com/liv-skreka/

4B - Sketching a Truncus

First sketch the graph along asymptotes to visual whether there is a x and/or y intercept.
Then solve for x and/or y intercept and label.
$4 D$ - The Graph of $y=\sqrt{ } x$

The general form of a root x graph: a dilates the graph
if a is negative $(-a)$, the graph is reflected in the x axis
if x is negative $(\sqrt{ }-x)$, the graph is reflected in the x axis

NOTE: ensure to rearrange if there is a -x h moves the graph left and right (along the x axis)
k moves the graph up and down (along the y axis)
An endpoint will occur at (h,k) - reverse symbol of h value.

4D - Sketching a graph of $y=\sqrt{ } x$

Not published yet.
Last updated 13th May, 2024.
Page 2 of 4 .

4D - Sketching a graph of $y=-\sqrt{ } x$

$A y=-\sqrt{ } x$ graph is reflected in the X AXIS.

4D - Sketching a $y=\sqrt{ }-x$ graph

Example 7

When $x=0, y=\sqrt{2}+3$.
$A y=\sqrt{-x}$ graph is reflected in the Y AXIS.
When sketching a $y=\sqrt{ }-x$ graph, sometimes it will appear as a $y=\sqrt{ } h-x$ graph, ensure it is rearranged so that the -1 coefficient is outside the brackets -> as $\mathrm{y}=\sqrt{ }-(\mathrm{x}-\mathrm{h})$ graph

5H - Applications

Example 26

A householder has six laying hens and wishes to construct a rectangular enclosure to provide a maximum area for the hens, using a 12 m length of fencing wire. Construct a function that will give the area of the enclosure, A, in terms of its length, ℓ. By sketching a graph, find the maximum area that can be fenced.
Solution
Let $\ell=$ length of the enclosure
Then width $=\frac{12-2 \ell}{2}=6-\ell$
The area is

$\begin{aligned} A(\ell) & =\ell(6-\ell) \\ & =6 \ell-\ell^{2}\end{aligned}$
The domain of A is the interval $[0,6]$.
The maximum area is $9 \mathrm{~m}^{2}$ and occurs when $\ell=3 \mathrm{~m}$
i.e. when the enclosure is a square.

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish
Yours!
https://apollopad.com

5A - Set Notation and Sets of Numbers.

```
Interval notation
Among the most important subsets of R are the intervals. The following is an exhaustive list
of the various types of intervals and the standard notation for them. We suppose that }a\mathrm{ and }
are real numbers with a<b.
    (a,b)={x:a<x<b} [a,b]={x:a\leqx\leqb
    (a,b]={x:a<x\leqb} [a,b)={x:a<x<b}
    (a,\infty)={x:a<x} [a,\infty)={x:a\leqx}
(-\infty,b]={x:x\leqb}
Note: The 'closed' circle (\bullet) indicates that the number is included
    The 'open' circle (o) indicates that the number is not included.
The following are subsets of the real numbers for which we have special notation:
- Positive real numbers: }\mp@subsup{\mathbb{R}}{}{+}={x:x>0
- Negative real numbers: }\mp@subsup{\mathbb{R}}{}{-}={x:x<0
- Real numbers excluding zero: }\mathbb{R}\{0
Question 1
    a) Write the following set using ineval notation
    (x-1\leqx< 
                            [-1,7)
    b) Write the following using set notation:
    ii) }\mp@subsup{\mathbb{R}}{}{+
    {x:-\infty<x<2}
        {x:0\underline{x}<0-0}
```


5B - Function Notation

$$
\begin{aligned}
& f: x \rightarrow y, f(x)=\text { eruce } \\
& \text { demain co-demain function }
\end{aligned}
$$

5B - Relations, Domain and Range

By liv.skreka

cheatography.com/liv-skreka/

5C - Functions

Restriction of a function
Consider the following functions:

$$
f(x)=x^{2}, x \in \mathbb{R}
$$

$$
g(x)=x^{2},-1 \leq x \leq 1
$$

The different letters, f, g and h, used to name the functions emphasise the fact that there are three different fuuctions, even though they all have the same rule. They are different becauss
they are defined for different domains. We say that g and h are restrictions of f since their hey are defined for different domains. We say that g and h are restrictions of f, since their domains are subsets of the domain of f.

We can restrict a function to make it one to one.

As such, a parabola can have its domain restricted so it is a half parabola - this way it is now a one-to-one function.

Not published yet.
Last updated 13th May, 2024.
Page 3 of 4 .

5E - Piecewise Functions

Functions which have different rules for different subsets of their domain are called piecewise-defined functions. They are also known as hybrid functions.

5F - Applying Function Notation

Examplets:

If $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a x+b$ such that $f(1)=7$ and $f(5)=19$, find a and b and sketch the graph of $y=f(x)$.
Solution
Since $f(1)=7$ and $f(5)=19$,
$7=a+b \quad$ (1)
and $19=5 a+b \quad$ (2)
Subtract (1) from (2):
$12=4 a$
Thus $a=3$ and substituting in (1) gives $b=4$.
Hence $f(x)=3 x+4$.

Example 20

Find the quadratic function f such that $f(4)=f(-2)=0$ and $f(0)=16$.
Solution
Since 4 and -2 are solutions to the quadratic equation $f(x)=0$, we have
$f(x)=k(x-4)(x+2)$
Since $f(0)=16$, we obtain
$16=k(-4)(2)$
$k=-2$
Hence
$f(x)=-2(x-4)(x+2)$
$=-2\left(x^{2}-2 x-8\right)$
$=-2 x^{2}+4 x+16$

NOTE: when evaluating piecewise
functions, ensure you pay attention to the x value, and the appropriate domain for each rule.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

5G - Inverse functions

From this the following is evident:

$$
\begin{aligned}
\operatorname{dom} f^{-1} & =\operatorname{ran} f \\
\operatorname{ran} f^{-1} & =\operatorname{dom} f
\end{aligned}
$$

A function has an inverse function if and only if it is one-to-one.

Example 23

Find the inverse of the function $f:[1, \infty) \rightarrow \mathbb{R}, f(x)=(x-1)^{2}+4$.
Solution
The inverse has rule
$x=(y-1)^{2}+4$
$(y-1)^{2}=x-4$
$y-1= \pm \sqrt{x-4}$
$y=1 \pm \sqrt{x-4}$
But $\operatorname{ran} f^{-1}=\operatorname{dom} f=[1, \infty)$, and so
$f^{-1}(x)=1+\sqrt{x-4}$
with $\operatorname{dom} f^{-1}=\operatorname{ran} f=[4, \infty)$

NOTE: when finding inverse functions always:

- Sketch the original function using its domain, and find its range.
- Sketching the original can help decide if the inverse should be positive or negative
- Once decided, then, sketch the inverse over the same set of axes, and label $y=x$ on the graph.
- Swap the original's domain and range to then find the inverse's

5G - Inverse Functions

8 Let $f:(-\infty, a] \rightarrow \mathbb{R}, f(x)=\sqrt{a-x}$, where a is a constant.
a Find $f^{-1}(x)$.
If the graphs of $y=f(x)$ and $y=f^{-1}(x)$ intersect at $x=1$, find the possible values of a.
$8 f:(-\infty, a] \rightarrow \mathbb{R}, f(x)=\sqrt{a-x}$
a $x=\sqrt{a-y}$
$\therefore x^{2}=a-y, \therefore y=a-x^{2}$
$f^{-1}(x)=a-x^{2}, x \geq 0$ (to match
Range of f)
b At $x=1: \sqrt{a-x}=a-x^{2}$
$\therefore \sqrt{a-1}=a-1$
$a-1=(a-1)^{2}$
$a^{2}-2 a+1-a+1=0$
$a^{2}-3 a+2=0$
$(a-2)(a-1)=0$
$a=1,2$

By liv.skreka
cheatography.com/liv-skreka/

Not published yet
Last updated 13th May, 2024.
Page 4 of 4.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

