Cheatography

Three Basic Data Types

my_num = 25 #numbers
my_boolean = true #Booleans
my_string = "Ruby" #Strings

Loop and Next

i=0
loop do

i+=1

next ifi % 2 ==
puts "#{i}"
break if i == 10
end

Ruby Cheat Sheet

by litoblee via cheatography.com/19693/cs/2671/

users string. (converts "s" to

“th") (cont)

else
puts "Nothing to do here!"
end

use a splat argument

def whats_up(greeting, *bros)
bros.each { |bro| puts "#
{greetings}, #{bro}!" }

end

what_up("What up", "Justin",
"Ben", "Kevin Sorbo")

95.upto(100) { |num| print num, " " }
=>9596 97 98 99 100
"L".upto("P") { |letter| print letter, " "

}
=LMNOP

multiples_of_3 = Proc.new do |n|
n% 3 ==

end
(1..10).to_a.select(&multiples_of_3)
#==>[3, 6, 9]

use .respond_to

[1, 2, 3].respond_to?(:push)
would return true, since you can
call .push on an array object.

[1, 2, 3].respond_to?(:to_sym)
would return false, since you can't
turn an array into a symbol.

Array to string

numbers_array = [1, 2, 3, 4, 5, 6,
7,8,9,10]

strings_array =
numbers_array.map(&:to_s)

users string. (converts "s" to

"th")

if user_input.include? "s"
user_input.gsub!(/s/, "th")

Use a counter and Until Loop to

count to ten

counter = 1

until counter == 11
puts counter

counter = counter + 1
end

combined comparison operator

It's <=>. It returns 0 if the first
operand (item to be compared)
equals the second, 1 if first
operand is greater than the
second, and -1 if the first operand
is less than the second.

Collect

fibs =[1,1,2, 3,5, 8, 13, 21, 34,
55]

doubled_fibs = fibs.collect { |n| n *
2}

#==>[2, 2, 4, 6, 10, 16, 26, 42, 68,
110]

Lambda

lam = lambda { |x| puts x*2 }
[1,2,3].each(&lam)

lam = lambda { puts "Hello World" }
lam.call

inclusive and exclusive ranges

for num in 1..10 #includes 10
for num in 1...10 #excludes 10

movie_ratings = {

primer: 3.5,

the_matrix: 5,

uhf: 1,

}

good_movies =
movie_ratings.select { |k, v| v> 3}
=> {:primer=>3.5, :the_matrix=>5}

Yield

def yield_name(name)

puts "In the method! Let's yield."
yield("Kim")

puts "In between the yields!"
yield(name)

puts "Block complete! Back in the
method."

end

yield_name("Scott") { |n| puts "My
name is #{n}" }

H#==>

In the method! Let's yield.

My name is Kim

In between the yields!

My name is Scott

Block complete! Back in the
method.

By litoblee Not published yet.
Last updated 12th October, 2014.

Page 1 of 1.

Sponsored by Readability-Score.com
cheatography.com/litoblee/ Measure your website readability!

https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/litoblee/
http://www.cheatography.com/litoblee/cheat-sheets/ruby
http://www.cheatography.com/litoblee/
https://readability-score.com

	Ruby Cheat Sheet - Page 1
	Three Basic Data Types
	Use a counter and Until Loop to count to ten
	Select
	Loop and Next
	use a splat argument
	combined comparison operator
	Yield
	upto
	use .respo­nd_to
	Collect
	Proc
	Array to string
	Lambda
	users string. (converts "­s" to "­th")
	inclusive and exclusive ranges

