Cheatography

Three Basic Data Types

my_num = 25 #numbers
my_boolean = true #Booleans
my_string = "Ruby" #Strings

Loop and Next

i=0
loop do

i+=1

next ifi % 2 ==
puts "#{i}"
break if i == 10
end
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users string. (converts "s" to

“th") (cont)

else
puts "Nothing to do here!"
end

use a splat argument

def whats_up(greeting, *bros)
bros.each { |bro| puts "#
{greetings}, #{bro}!" }

end

what_up("What up", "Justin",
"Ben", "Kevin Sorbo")

95.upto(100) { |num| print num, " " }
=>9596 97 98 99 100
"L".upto("P") { |letter| print letter, " "

}
=LMNOP

multiples_of_3 = Proc.new do |n|
n% 3 ==

end
(1..10).to_a.select(&multiples_of_3)
#==>[3, 6, 9]

use .respond_to

[1, 2, 3].respond_to?(:push)
would return true, since you can
call .push on an array object.

[1, 2, 3].respond_to?(:to_sym)
would return false, since you can't
turn an array into a symbol.

Array to string

numbers_array = [1, 2, 3, 4, 5, 6,
7,8,9,10]

strings_array =
numbers_array.map(&:to_s)

users string. (converts "s" to

"th")

if user_input.include? "s"
user_input.gsub!(/s/, "th")

Use a counter and Until Loop to

count to ten

counter = 1

until counter == 11
puts counter

counter = counter + 1
end

combined comparison operator

It's <=>. It returns 0 if the first
operand (item to be compared)
equals the second, 1 if first
operand is greater than the
second, and -1 if the first operand
is less than the second.

Collect

fibs =[1,1,2, 3,5, 8, 13, 21, 34,
55]

doubled_fibs = fibs.collect { |n| n *
2}

#==>[2, 2, 4, 6, 10, 16, 26, 42, 68,
110]

Lambda

lam = lambda { |x| puts x*2 }
[1,2,3].each(&lam)

lam = lambda { puts "Hello World" }
lam.call

inclusive and exclusive ranges

for num in 1..10 #includes 10
for num in 1...10 #excludes 10

movie_ratings = {

primer: 3.5,

the_matrix: 5,

uhf: 1,

}

good_movies =
movie_ratings.select { |k, v| v> 3}
=> {:primer=>3.5, :the_matrix=>5}

Yield

def yield_name(name)

puts "In the method! Let's yield."
yield("Kim")

puts "In between the yields!"
yield(name)

puts "Block complete! Back in the
method."

end

yield_name("Scott") { |n| puts "My
name is #{n}" }

H#==>

In the method! Let's yield.

My name is Kim

In between the yields!

My name is Scott

Block complete! Back in the
method.
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