

Integral Calculus (Various) Cheat Sheet by Lipsum via cheatography.com/151963/cs/42793/

Derivatives

- Power Rule: $\frac{d}{dx}(x^n) = nx^{n-1}$
- Product Rule: (uv)' = u'v + uv'
- Quotient Rule: $\left(\frac{u}{v}\right)' = \frac{u'v uv'}{v^2}$
- Chain Rule: $\frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)$

Trigonometric Identities

- Pythagorean Identities: $\sin^2(x) + \cos^2(x) = 1$
- Sum and Difference Identities: $\sin(x\pm y)=\sin(x)\cos(y)\pm\cos(x)\sin(y)$
- * Double Angle Identities: $\sin(2x) = 2\sin(x)\cos(x)$

Logarithmic Properties

- - Product Rule: $\log_1(xy) = \log_1(x) + \log_1(y)$
 - Quotient Rule: $\log_b\left(\frac{x}{y}\right) = \log_b(x) \log_b(y)$
 - Power Rule: $\log_b(x^n) = n \log_b(x)$

Approximating Area Under a Curve

- Left $\operatorname{Sum} = \sum_{i=1}^n f(\bar{x}_{i-1}) \Delta x$ Right $\operatorname{Sum} = \sum_{i=1}^n f(x_i) \Delta x$ Midpoint $\operatorname{Sum} = \sum_{i=1}^n f(\bar{x}_i) \Delta x$, where \bar{x}_i is the midpoint of the ith interval.
- Trapezoidal Rule:
- Trapezoidal Rule = $\frac{\Delta x}{2}[f(a) + 2f(x_1) + 2f(x_2) + ... + 2f(x_{n-1}) + f(b)]$
- Simpson's Rule = $\frac{\Delta x}{3}[f(a)+4f(x_1)+2f(x_2)+4f(x_3)+\ldots+2f(x_{n-2})+$

Power Sum Rules

 $\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$

Definite Integrals

- Definition: $\int_a^b f(x)dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_{i-1})\Delta x$.
 Properties: Flip bounds (negate), break into smaller into
- ntal understanding of integration and its geometric interpretation as area

u-substitution

- place x with u(x), convert bounds, $dx = \frac{du}{u(x)}$
- Calc 1 Technique: Use when an integral's integrand is a composite function, resemb application in reverse.

Integration by Parts

- · LIATE Rule: Choo use u as the algebraic function that appears first in the list of functions Logarithmic, Inverse trigonometric, Algebraic, Trigonometric, Exp

Integrals of Trigonometric Functions

- $\int \sin(x) dx = -\cos(x) + C$ $\int \cos(x) dx = \sin(x) + C$

- $$\begin{split} &\int \tan(x)\,dx = -\ln|\cos(x)| + C \\ &\operatorname{thergrain} \operatorname{involving Secant} \operatorname{and} \operatorname{cosecant} \\ &\cdot \int \sec(x)\,dx = \ln|\sec(x) + \tan(x)| + C \\ &\cdot \int \csc(x)\,dx = -\ln|\csc(x) + \cot(x)| + C \\ &\operatorname{thergrain} \operatorname{involving Products} \operatorname{of Trigonometric Functions} \\ &\cdot \int \sin^n(x)\cos^m(x)\,dx \text{ can often be solved using trig} \end{split}$$

reduction formulas for powers of sine and cosine

- trigonometric functions for variables. For example, if $\int \sqrt{a^2-x^2}\,dx$ appears, you could let $x=a\sin(\theta)$ or $x=a\cos(\theta)$ to

Hyperbolic Trig Functions

- - Hyperbolic Sine: $\sinh(x) = \frac{e^{e^{-}} e^{x}}{2}$ Hyperbolic Cosine: $\cosh(x) = \frac{e^{e^{+}} + e^{-x}}{2}$ Hyperbolic Tangent: $\tanh(x) = \frac{\sinh(x)}{\cosh(x)}$
- Hyperbolic functions have properties similar to trigonometric functions, such as even/odd symmetry and relationships between their derivatives and themselves

Power Series

• $\sum_{n=0}^{\infty} a_n (x-a)^n$ with a radius of converge

Order of Convergence

• $\lim_{n \to \infty} \frac{|x_{n+1} - L|}{|x_n - L|^p} = C$, where C is a constant and p is the order of p in the order of p in the order of p is the order of p in the order of p in the order of p is the order of p in the

Convergence

Convergence and Divergence:

- number of terms increases indefinitely. If the limit exists, it is called the sum of the series
- Conversely, a series diverges if the sequence of partial sums does not approach a finite limit. In this case, the series does not have a sum.
- Example of convergent series: $\sum_{n=1}^{\infty}\frac{1}{2^n}=1$, known as the geometric series Example of divergent series: $\sum_{n=1}^{\infty}n$ diverges, as the partial sums increase v
- common convergence tests include:

 - immon convergence tests include: $0 \text{ Nevergence Test} \text{ } \lim_{n \to \infty} a_n \neq 0, \text{ then the series } \sum_{n=1}^\infty a_n \text{ diverges.}$ $0 \text{ Geometric Series Test} \sum_{n=1}^\infty a_n^{-n} \text{ converges to } \frac{1}{n^n} |r| < 1.$ $0 \text{ Integral Test } |r| \langle x| \text{ possible, continuous, and decreasing for } x \geq 1 \text{ and } a_n = f(n), \text{ then } \sum_{n=1}^\infty a_n \text{ and } \int_1^\infty f(x) \, dx \text{ either both converge or both diverge.}$

- Absolute Convergence: A series $\sum_{n=1}^\infty |a_n|$ converges. Conditional Convergence: A series $\sum_{n=1}^\infty a_n$ converges, but $\sum_{n=1}^\infty |a_n|$ diverges.

Sequences and Series

- A sequence is an ordered list of numbers written in a specific order. It can be finite or $\hbox{Formally, a sequence is denoted as } (a_n) \hbox{ or } \{a_n\}, \hbox{ where } a_n \hbox{ represents the nth term of sequence.}$
- Example: $1,1/2,1/3,1/4,\ldots$ is a sequence with the formula $a_n=\frac{1}{n}$

- Formally, a series is denoted as $\sum_{n=1}^\infty a_n$ or $a_1+a_2+a_3+\ldots$ Example: $1+\frac12+\frac13+\frac14+\ldots$ represents the series of the sequence materials.

- Not published yet.

Partial Fractions

- simpler fractions.

- simper fractions.

 The general process involves:

 2.1. Factorizing the denominator into linear and irreducible quadratic factors.

 2.2. Writing the partial fraction decomposition with undetermined coefficients for
- Example: $\frac{3x^2+5x+7}{x^2-2x^2+x}$ can be decomposed into partial fractions as $\frac{A}{x}+\frac{B}{x-1}+\frac{C}{(x-1)^2}$

Logistical Growth Function

• $P(t) = \frac{K}{1+\alpha e^{-tt}}$

r = growth rate, K = carrying capacity

Improper Integrals

• Example: $\int_1^\infty \frac{1}{x^p} \, dx$ converges if p>1 and diverges if $p\leq 1$.

Integrals where the limits of integration are infinite or where the function being integrated is undefined at certain points within the interval.

Taylor Polynomials

- A Taylor polynomial of degree n for a function f(x) centered at a point x=a is a polynomial that approximates f(x) near x=a.
- The general form of a Taylor polynomial is
- $P_n(x)=f(a)+f'(a)(x-a)+\frac{f'(a)}{2!}(x-a)^2+\cdots+\frac{f^{(a)}}{n!}(x-a)^n$ Here, $f^{(n)}(a)$ denotes the nth derivative of f(x) evaluated at x=a, and n! n!

Taylor's Theorem

- polynomial approximation $P_n(x)$.
- It states that if f(x) is (n+1)-times differentiable on an interval cexists a number c between a and x such that the error $R_n(x) = f(x) - P_n(x)$ can be
- This error term is known as the remainder or residual term of the Taylor polynomial

Maclaurin Series

- (e., a=0). The Maclaurin series expansion of a function f(x) is given by: $f(x)=f(0)+f'(0)x+\frac{f''(0)}{2}x^2+\cdots+\frac{f''(0)}{n}x^n+\cdots$ Essentially, the Maclaurin series represents the Taylor series expansion of a function around the

By Lipsum cheatography.com/lipsum/

Last updated 21st March, 2024. Page 1 of 1.

Sponsored by Readable.com Measure your website readability! https://readable.com