
C++ (Weeks 6–9) Cheat Sheet
by Lipsum via cheatography.com/151963/cs/40909/

FunctionsFunctions

// Function declaration
return_type function_nam‐
e(parameters);
// Function definition
return_type function_nam‐
e(parameters) {
 // Function body
 // Code here
 return result; //
Optional
}

Search AlgorithmsSearch Algorithms

Linear Search:Linear Search:
Linear search is a simple algorithm that
scans through an array one element at a
time, comparing each element with the
target value. It continues this process until it
finds the target or reaches the end of the
array. Linear search is straightforward but
not the most efficient for large datasets.

Binary Search:Binary Search:
Binary search works on a sorted array and
follows a divide-and-conquer approach. It
starts with the middle element and
compares it to the target. If they match, the
search is successful. If the target is smaller,
it repeats the process on the left half of the
array; if the target is larger, it looks in the
right half. This process continues until the
target is found or the search range
becomes empty.

Sorting AlgorithmsSorting Algorithms

Bubble Sort:Bubble Sort: Bubble sort repeatedly steps
through the list, compares adjacent
elements, and swaps them if they are in the
wrong order. It continues to do this until no
more swaps are needed, indicating that the
list is sorted. Bubble sort has poor perfor‐
mance for large lists and is mainly used for
educational purposes.

Selection Sort:Selection Sort: Selection sort divides the list
into a sorted and an unsorted region. It
repeatedly selects the minimum element
from the unsorted region and moves it to
the end of the sorted region. The process
continues until the entire list is sorted.

ArraysArrays

// Declare an array
data_type array_name[size];
// Initialize an array
data_type array_name[] =
{value1, value2, value3};
// Access elements
element = array_name[index];
// Modify elements
array_name[index] =
new_value;

ReferencesReferences

// Declare a reference
data_type& reference_name =
original_variable;
// Use reference
reference_name = new_value; //
Modifies the original variable

PointersPointers

// Declare a pointer
data_type* pointer_name;
// Initialize pointer
pointer_name = &variable;
// Dereference pointer
value = *pointer_name;
// Pointer arithmetic
pointer_name++; // Moves to
the next element
// Dynamic memory allocation
data_type* dynamic_ptr = new
data_type;
delete dynamic_ptr; // Release
memory

StructuresStructures

// Declare a structure
struct StructName {
 data_type member1;
 data_type member2;
 // ...
};
// Create an instance
StructName instance_name;
// Access members
instance_name.member1 =
value;
// Nested structures
struct NestedStruct {
 int inner_member;
};
struct OuterStruct {
 int outer_member;
 NestedStruct nested;
};

By LipsumLipsum
cheatography.com/lipsum/

Not published yet.
Last updated 19th October, 2023.
Page 1 of 1.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/lipsum/
http://www.cheatography.com/lipsum/cheat-sheets/c-weeks-6-9
http://www.cheatography.com/lipsum/
https://readable.com

	C++ (Weeks 6–9) Cheat Sheet - Page 1
	Functions
	Sorting Algorithms
	Pointers
	Search Algorithms
	Arrays
	Structures
	References

