
C++ (Weeks 6–9) Cheat Sheet
by Lipsum via cheatography.com/151963/cs/40909/

FunctionsFunctions

// Function declaration
return​_type functi​on_​nam​‐
e(p​ara​met​ers);
// Function definition
return​_type functi​on_​nam​‐
e(p​ara​meters) {
 ​ ​ ​ // Function body
 ​ ​ ​ // Code here
 ​ ​ ​ ​return result; //
Optional
}

Search AlgorithmsSearch Algorithms

Linear Search:Linear Search:
Linear search is a simple algorithm that
scans through an array one element at a
time, comparing each element with the
target value. It continues this process until it
finds the target or reaches the end of the
array. Linear search is straig​htf​orward but
not the most efficient for large datasets.

Binary Search:Binary Search:
Binary search works on a sorted array and
follows a divide​-an​d-c​onquer approach. It
starts with the middle element and
compares it to the target. If they match, the
search is succes​sful. If the target is smaller,
it repeats the process on the left half of the
array; if the target is larger, it looks in the
right half. This process continues until the
target is found or the search range
becomes empty.

Sorting AlgorithmsSorting Algorithms

Bubble Sort:Bubble Sort: Bubble sort repeatedly steps
through the list, compares adjacent
elements, and swaps them if they are in the
wrong order. It continues to do this until no
more swaps are needed, indicating that the
list is sorted. Bubble sort has poor perfor​‐
mance for large lists and is mainly used for
educat​ional purposes.

Selection Sort:Selection Sort: Selection sort divides the list
into a sorted and an unsorted region. It
repeatedly selects the minimum element
from the unsorted region and moves it to
the end of the sorted region. The process
continues until the entire list is sorted.

ArraysArrays

// Declare an array
data_type array_​nam​e[s​ize];
// Initialize an array
data_type array_​name[] =
{value1, value2, value3};
// Access elements
element = array_​nam​e[i​ndex];
// Modify elements
array_​nam​e[i​ndex] =
new_value;

ReferencesReferences

// Declare a reference
data_t​ype​& refere​nce​_name =
origin​al_​var​iable;
// Use reference
refere​nce​_name = new_value; //
Modifies the original variable

PointersPointers

// Declare a pointer
data_type* pointe​r_name;
// Initialize pointer
pointe​r_name = &v​ari​able;
// Derefe​rence pointer
value = *point​er_​name;
// Pointer arithmetic
pointe​r_n​ame++; // Moves to
the next element
// Dynamic memory allocation
data_type* dynami​c_ptr = new
data_type;
delete dynami​c_ptr; // Release
memory

StructuresStructures

// Declare a structure
struct StructName {
 ​ ​ ​ ​dat​a_type member1;
 ​ ​ ​ ​dat​a_type member2;
 ​ ​ ​ // ...
};
// Create an instance
StructName instan​ce_​name;
// Access members
instan​ce_​nam​e.m​ember1 =
value;
// Nested structures
struct Nested​Struct {
 ​ ​ ​ int inner_​member;
};
struct OuterS​truct {
 ​ ​ ​ int outer_​member;
 ​ ​ ​ ​Nes​ted​Struct nested;
};

By LipsumLipsum
cheatography.com/lipsum/

Not published yet.
Last updated 19th October, 2023.
Page 1 of 1.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/lipsum/
http://www.cheatography.com/lipsum/cheat-sheets/c-weeks-6-9
http://www.cheatography.com/lipsum/
https://readable.com

	C++ (Weeks 6–9) Cheat Sheet - Page 1
	Functions
	Sorting Algorithms
	Pointers
	Search Algorithms
	Arrays
	Structures
	References

