\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{Lini} \pdfinfo{ /Title (circuitsfinal2014.pdf) /Creator (Cheatography) /Author (Lini) /Subject (CircuitsFinal2014 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{CCCCCC} \definecolor{LightBackground}{HTML}{F8F8F8} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{CircuitsFinal2014 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{Lini} via \textcolor{DarkBackground}{\uline{cheatography.com/21323/cs/4073/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}Lini \\ \uline{cheatography.com/lini} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 8th May, 2015.\\ Updated 12th May, 2016.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{4} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 1 - Basics}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- {\bf{Electric current = (i):}} time rate of change of charge, measured in amperes (A). \newline % Row Count 2 (+ 2) - {\bf{Charge = (q):}} integral of i \newline % Row Count 3 (+ 1) - {\bf{Voltage (or potential difference) = (V):}} energy required to move a unit charge through an element \newline % Row Count 6 (+ 3) - {\bf{Power}} = (W): vi = (i\textasciicircum{}2)R \newline % Row Count 7 (+ 1) - {\bf{Passive sign convention:}} when the current enters through the positive terminal of an element (p = +vi) \newline % Row Count 10 (+ 3) {\bf{Remember:}} \newline % Row Count 11 (+ 1) +Power absorbed = -Power supplied -{}-\textgreater{} sum of power in a circuit = 0 \newline % Row Count 13 (+ 2) - {\bf{Energy (J)}} = integral of P% Row Count 14 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 2}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Ohms Law:}} v=iR \newline % Row Count 1 (+ 1) {\bf{Conductance (G)}} = 1/R = i/v \newline % Row Count 2 (+ 1) {\bf{Branch:}} single element such as a voltage source or a resistor. \newline % Row Count 4 (+ 2) {\bf{Node:}} point of connection between two or more branches \newline % Row Count 6 (+ 2) {\bf{Loop:}} any closed path in a circuit. \newline % Row Count 7 (+ 1) {\bf{Kirchhoff's current law (KCL):}} algebraic sum of currents entering a node (or a closed boundary) is zero. \newline % Row Count 10 (+ 3) {\bf{Kirchhoff's voltage law (KVL):}} algebraic sum of all voltages around a closed path (or loop) is zero. \newline % Row Count 13 (+ 3) {\bf{Voltage D:}} v1 = ((R1) / (R1 + R2)) * v \newline % Row Count 14 (+ 1) {\bf{Voltage D:}} v2 = ((R2 / (R1 + R2)) * v \newline % Row Count 15 (+ 1) {\bf{Current D:}} i1 = (R2 * i) / (R1 + R2) \newline % Row Count 16 (+ 1) {\bf{Current D:}} i2 = (R1 * i) / (R1 + R2)% Row Count 17 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 3 - Methods of Analysis}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Nodal Analysis:}} want to fine the node voltages \newline % Row Count 2 (+ 2) Step 1: \newline % Row Count 3 (+ 1) select reference node \newline % Row Count 4 (+ 1) - assign voltages v1 -{}-\textgreater{} vn to \newline % Row Count 5 (+ 1) remaining nodes \newline % Row Count 6 (+ 1) Step 2: \newline % Row Count 7 (+ 1) apply KCL to each node \newline % Row Count 8 (+ 1) - want to express branch currents in \newline % Row Count 9 (+ 1) terms of voltage \newline % Row Count 10 (+ 1) Step 3: \newline % Row Count 11 (+ 1) solve for unknowns \newline % Row Count 12 (+ 1) {\bf{Important:}} \newline % Row Count 13 (+ 1) {\bf{current flows from high to low (+ ==\textgreater{} -)}} \newline % Row Count 14 (+ 1) {\bf{SuperNode Properties}} \newline % Row Count 15 (+ 1) 1. The voltage source inside the supernode provides a constraint equation needed to solve for the node voltages \newline % Row Count 18 (+ 3) 2. Supernode had no voltage of its own \newline % Row Count 19 (+ 1) 3. Supernode requires the application of both KCL and KVL \newline % Row Count 21 (+ 2) {\bf{Mesh Analysis}} \newline % Row Count 22 (+ 1) Step 1: \newline % Row Count 23 (+ 1) Assign mesh currents or loops \newline % Row Count 24 (+ 1) Step 2: \newline % Row Count 25 (+ 1) Apply KVL \newline % Row Count 26 (+ 1) - use OHMS LAW to express voltages in terms of the mesh current \newline % Row Count 28 (+ 2) Step 3: \newline % Row Count 29 (+ 1) Solve for the unknown \newline % Row Count 30 (+ 1) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 3 - Methods of Analysis (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Supermesh}} \newline % Row Count 1 (+ 1) - when two meshes have an independent or dependent CURRENT source \newline % Row Count 3 (+ 2) between them% Row Count 4 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 4 - Circuit Theorems}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Superposition}} \newline % Row Count 1 (+ 1) principal states that the VOLTAGE ACROSS or CURRENT THROUGH an element in a linear circuit is the SUM of the VOLTAGES OR CURRENTS that are caused after solving for each INDEPENDENT source separately \newline % Row Count 5 (+ 4) {\emph{How to solve a superposition circuit}} \newline % Row Count 6 (+ 1) Step 1: Turn OFF ALL independent sources except for ONE ==\textgreater{} find voltage or current \newline % Row Count 8 (+ 2) Step 2: Repeat above for all other independent sources \newline % Row Count 10 (+ 2) Step 3: Add all voltages/currents together to find final value \newline % Row Count 12 (+ 2) {\bf{Thevenin's Theorem}} \newline % Row Count 13 (+ 1) V(th) = V(oc) \newline % Row Count 14 (+ 1) circuit with Load: I(L) = V(th) / (R(th) + R(L)) ==\textgreater{} V(L) = R(L) {\emph{ I (L) ==\textgreater{} (R(L) / ((R(th) + R(L)) }} V(th)) \newline % Row Count 17 (+ 3) {\bf{Norton's Theorem}} \newline % Row Count 18 (+ 1) R(n) = R(th) \newline % Row Count 19 (+ 1) I(n) = i(sc) ==\textgreater{} (sc) = short circuit \newline % Row Count 20 (+ 1) I(n) = V(th) / R(th) \newline % Row Count 21 (+ 1) {\bf{Maximum Power Transfer}} \newline % Row Count 22 (+ 1) max power is transferred to the LOAD RESISTOR when the LOAD RESISTOR is EQUAL to the THEVENIN RESISTANCE: \newline % Row Count 25 (+ 3) R(L) = R(th) \newline % Row Count 26 (+ 1) p(max) = V(th)\textasciicircum{}2\textasciicircum{} / 4R(th)% Row Count 27 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 6 - Capacitors and Inductors}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Capacitors}} \newline % Row Count 1 (+ 1) q = C * v \newline % Row Count 2 (+ 1) {\bf{capacitance:}} ratio of the charge on one plate to the voltage difference between the two plates \newline % Row Count 4 (+ 2) i(t) = C(dv/dt) \newline % Row Count 5 (+ 1) v(t) = 1/C {[}Integral: i(T)dT + v(t0)){]} \newline % Row Count 6 (+ 1) T = time constant \newline % Row Count 7 (+ 1) energy (w) = .5Cv\textasciicircum{}2\textasciicircum{} \newline % Row Count 8 (+ 1) {\bf{Important:}} \newline % Row Count 9 (+ 1) {\bf{VOLTAGE of a capacitor cannot change instantaneously}} \newline % Row Count 11 (+ 2) {\bf{Capacitors in Series:}} 1 / Ceq = 1/C1 + 1/C2 + 1/Cn \newline % Row Count 13 (+ 2) {\bf{Capacitors in Parallel:}} Ceq = C1 + C2 + Cn \newline % Row Count 14 (+ 1) {\bf{Inductors}} \newline % Row Count 15 (+ 1) v = L(di / dt) \newline % Row Count 16 (+ 1) i = (1/L) {[}Integral: (v(T)dT + i(t0){]} \newline % Row Count 17 (+ 1) energy (w) = .5Li\textasciicircum{}2\textasciicircum{} \newline % Row Count 18 (+ 1) {\bf{Important:}} \newline % Row Count 19 (+ 1) {\bf{CURRENT through an inductor cannot change instantaneously}} \newline % Row Count 21 (+ 2) {\bf{Inductors in Series:}} \newline % Row Count 22 (+ 1) Leq = L1 + L2 + Ln \newline % Row Count 23 (+ 1) {\bf{Inductors in Parallel:}} \newline % Row Count 24 (+ 1) 1/Leq = 1/L1 + 1/L2 + 1/Ln% Row Count 25 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 7 - First Order Circuits}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Source Free RC Circuits}} \newline % Row Count 1 (+ 1) v(t) = V0 * e\textasciicircum{}-t/T\textasciicircum{} ==\textgreater{} T = RC \newline % Row Count 2 (+ 1) {\emph{How to Solve SOURCE FREE RC CIRCUITS}} \newline % Row Count 3 (+ 1) Step 1: Find v0 = V0 across the capacitor \newline % Row Count 4 (+ 1) Step 2: Find T (time constant) \newline % Row Count 5 (+ 1) {\bf{Source Free RL Circuits}} \newline % Row Count 6 (+ 1) i(t) = I0 * e\textasciicircum{}-t/T\textasciicircum{} ==\textgreater{} T = L / R \newline % Row Count 7 (+ 1) vr(t) = iR = I0 * Re\textasciicircum{}-t/T\textasciicircum{} \newline % Row Count 8 (+ 1) {\emph{How to Solve SOURCE FREE RL CIRCUITS}} \newline % Row Count 9 (+ 1) Step 1: Find i(0) = I0 through the inductor \newline % Row Count 10 (+ 1) Step 2: Find T (time constant) \newline % Row Count 11 (+ 1) {\bf{Step response of an RC circuit}} \newline % Row Count 12 (+ 1) v(t) = V0 when t \textless{} 0 \newline % Row Count 13 (+ 1) v(t) = Vs + (V0 - Vs)e\textasciicircum{}-t/T\textasciicircum{} when t \textgreater{} 0 \newline % Row Count 14 (+ 1) v = vn + vf ==\textgreater{} vn = V0e\textasciicircum{}-t/T\textasciicircum{}, vf = Vs(1-e\textasciicircum{}-t/T\textasciicircum{}) \newline % Row Count 16 (+ 2) OR \newline % Row Count 17 (+ 1) v(t) = v(infinity) + {[}( v(0) - v(infinity){]}e\textasciicircum{}-t/T\textasciicircum{} \newline % Row Count 19 (+ 2) {\emph{How to solve a STEP RESPONSE OF AN RC CIRCUIT}} \newline % Row Count 20 (+ 1) Step 1: Find initial capacitor voltage v0 (t \textless{} 0) \newline % Row Count 21 (+ 1) Step 2: Find final capacitor voltage v(in) (t \textgreater{} 0) \newline % Row Count 23 (+ 2) Step 3: Find T (time constant) (t \textgreater{} 0) \newline % Row Count 24 (+ 1) {\bf{Step response of an RL circuit}} \newline % Row Count 25 (+ 1) i(t) = i(infiniti) + {[} i(0) - i(infinity){]}e\textasciicircum{}-t/T\textasciicircum{} \newline % Row Count 26 (+ 1) {\emph{How to solve a STEP RESPONSE OF AN RL CIRCUIT}} \newline % Row Count 27 (+ 1) Step 1: Find initial inductor current i0 (t = 0) \newline % Row Count 28 (+ 1) Step 2: Find final final inductor current i(inf) ==\textgreater{} (t \textgreater{} 0) \newline % Row Count 30 (+ 2) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 7 - First Order Circuits (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Step 3: Find T (time constant) (t \textgreater{} 0)% Row Count 1 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 8 - Second Order Circuits}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Source Free RLC Circuits}} \newline % Row Count 1 (+ 1) v(0) = 1/C {[}integral ( idt = v0 ) from 0 to -infinity{]} \newline % Row Count 3 (+ 2) i(0) = I(0) \newline % Row Count 4 (+ 1) {\bf{Determining Dampness}} \newline % Row Count 5 (+ 1) {\emph{(alpha) = R / (2L)}} \newline % Row Count 6 (+ 1) {\emph{(omega w0) = 1 / sqrt(LC)}} \newline % Row Count 7 (+ 1) {\bf{1 - Overdamped (a \textgreater{} w0)}} \newline % Row Count 8 (+ 1) i(t) = Ae\textasciicircum{}s1t\textasciicircum{} + Be\textasciicircum{}s2t\textasciicircum{} \newline % Row Count 9 (+ 1) {\bf{2 - Critically Damped (a = w0)}} \newline % Row Count 10 (+ 1) s1 = s2 = a \newline % Row Count 11 (+ 1) i(t) = (A + Bt)e\textasciicircum{}-at\textasciicircum{} \newline % Row Count 12 (+ 1) {\bf{3 - Underdamped (a \textless{} w0)}} \newline % Row Count 13 (+ 1) i(t) = e\textasciicircum{}-at\textasciicircum{}(Acos(w0t) + Bsin(w0t)) \newline % Row Count 14 (+ 1) {\bf{Source Free Parallel Circuits}} \newline % Row Count 15 (+ 1) roots of characteristic euqation \newline % Row Count 16 (+ 1) s1,2 = -a (+-) sqrt(a\textasciicircum{}2\textasciicircum{} + w0\textasciicircum{}2\textasciicircum{}) \newline % Row Count 17 (+ 1) a = 1/(2RC) \newline % Row Count 18 (+ 1) w0 = 1/sqrt(LC) \newline % Row Count 19 (+ 1) {\bf{1 - Overdamped (a \textgreater{} w0)}} \newline % Row Count 20 (+ 1) i(t) = Ae\textasciicircum{}s1t\textasciicircum{} + Be\textasciicircum{}s2t\textasciicircum{} \newline % Row Count 21 (+ 1) {\bf{2 - Critically Damped (a = w0)}} \newline % Row Count 22 (+ 1) s1 = s2 = a \newline % Row Count 23 (+ 1) i(t) = (A + Bt)e\textasciicircum{}-at\textasciicircum{} \newline % Row Count 24 (+ 1) {\bf{3 - Underdamped (a \textless{} w0)}} \newline % Row Count 25 (+ 1) i(t) = e\textasciicircum{}-at\textasciicircum{}(Acos(wd(t)) + Bsin(wd(t))) \newline % Row Count 26 (+ 1) {\bf{Step Response of a SERIES RLC Circuit}} \newline % Row Count 27 (+ 1) {\bf{1 - Overdamped (a \textgreater{} w0)}} \newline % Row Count 28 (+ 1) v(t) = Vs + Ae\textasciicircum{}s1t\textasciicircum{} + Be\textasciicircum{}s2t\textasciicircum{} \newline % Row Count 29 (+ 1) {\bf{2 - Critically Damped (a = w0)}} \newline % Row Count 30 (+ 1) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 8 - Second Order Circuits (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{s1 = s2 = a \newline % Row Count 1 (+ 1) v(t) = Vs + (A + Bt)e\textasciicircum{}-at\textasciicircum{} \newline % Row Count 2 (+ 1) {\bf{3 - Underdamped (a \textless{} w0)}} \newline % Row Count 3 (+ 1) v(t) = Vs + e\textasciicircum{}-at\textasciicircum{}(Acos(wd(t)) + Bsin(wd(t))) \newline % Row Count 4 (+ 1) {\bf{Step Response of a PARALLEL RLC Circuit}} \newline % Row Count 5 (+ 1) {\bf{1 - Overdamped (a \textgreater{} w0)}} \newline % Row Count 6 (+ 1) i(t) = Is + Ae\textasciicircum{}s1t\textasciicircum{} + Be\textasciicircum{}s2t\textasciicircum{} \newline % Row Count 7 (+ 1) {\bf{2 - Critically Damped (a = w0)}} \newline % Row Count 8 (+ 1) s1 = s2 = a \newline % Row Count 9 (+ 1) i(t) = Is + (A + Bt)e\textasciicircum{}-at\textasciicircum{} \newline % Row Count 10 (+ 1) {\bf{3 - Underdamped (a \textless{} w0)}} \newline % Row Count 11 (+ 1) i(t) = Is + e\textasciicircum{}-at\textasciicircum{}(Acos(wd(t)) + Bsin(wd(t)))% Row Count 12 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 9 - Sinusoids and Phasors}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{w = omega \newline % Row Count 1 (+ 1) T = 2*pie / w \newline % Row Count 2 (+ 1) freq = 1 / T (Hertz) \newline % Row Count 3 (+ 1) v(t) = v(m)*sin(wt + theta) \newline % Row Count 4 (+ 1) v1(t) = v(m)*sin(wt) \newline % Row Count 5 (+ 1) v2(t) = v(m)*sin(wt + theta) \newline % Row Count 6 (+ 1) sin(A +- B) = sinAcosB +- cosAsinB \newline % Row Count 7 (+ 1) cos(A +- B) = cosAcosB +- sinAsinB \newline % Row Count 8 (+ 1) Acos(wt) + Bsin(wt) = C*cos(wt - theta) \newline % Row Count 9 (+ 1) C = sqrt(A\textasciicircum{}2\textasciicircum{} + B\textasciicircum{}2\textasciicircum{}) \newline % Row Count 10 (+ 1) theta = tan\textasciicircum{}-1\textasciicircum{} (B/A) \newline % Row Count 11 (+ 1) {\bf{Complex Numbers}} \newline % Row Count 12 (+ 1) rectangular form: z = x + jy \newline % Row Count 13 (+ 1) polar: z = r \textless{} (theta) \newline % Row Count 14 (+ 1) expolar: z = re\textasciicircum{}j(theta)\textasciicircum{} \newline % Row Count 15 (+ 1) sin: r (cos(theta) + j*sin(theta)) \newline % Row Count 16 (+ 1) z = x + jy \newline % Row Count 17 (+ 1) z1 = x1 + jy1 == r1 \textless{} (theta)1 \newline % Row Count 18 (+ 1) z2 = x2 + jy2 == r2 \textless{} (theta)2 \newline % Row Count 19 (+ 1) {\bf{operations}} \newline % Row Count 20 (+ 1) addition: z1 + z2 == (x1 + x2) + j*(y1 + y2) \newline % Row Count 21 (+ 1) subtraction: z1 - z2 == (x1 - x2) + j*(y1 - y2) \newline % Row Count 22 (+ 1) multiplication: z1{\emph{z2 == r1}}r2 \textless{} ((theta)1 + (theta)2) \newline % Row Count 24 (+ 2) division: z1/z2 == r1/r2 \textless{} ((theta)1 - (theta)2) \newline % Row Count 25 (+ 1) reciprocal: 1/z = 1/r \textless{} -(theta) \newline % Row Count 26 (+ 1) square: sqrt(z) = sqrt(r) \textless{} (theta)/2 \newline % Row Count 27 (+ 1) complex conjugate: z* = x - jy = r \textless{} -(theta) = re\textasciicircum{}-j(theta)\textasciicircum{} \newline % Row Count 29 (+ 2) {\bf{real vs. imaginary}} \newline % Row Count 30 (+ 1) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 9 - Sinusoids and Phasors (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{e\textasciicircum{}+-j(theta)\textasciicircum{} = cos(theta) +- j*sin(theta) \newline % Row Count 1 (+ 1) cos(theta) = REAL \newline % Row Count 2 (+ 1) jsin(theta) = IMAGINARY \newline % Row Count 3 (+ 1) {\bf{voltage-current relationship}} \newline % Row Count 4 (+ 1) R v = Ri (time domain) v = RI (frequency domain) \newline % Row Count 6 (+ 2) L v = L(di/dt) (time) v = jwLI \newline % Row Count 7 (+ 1) C i = C(dv/dt) (time) V = I / jwC \newline % Row Count 8 (+ 1) {\bf{Impedance vs. admittance}} \newline % Row Count 9 (+ 1) R Z = R (impedance) Y = 1 / R \newline % Row Count 10 (+ 1) I Z = jwL Y = 1 / jwL \newline % Row Count 11 (+ 1) C Z = 1 / jwC Y = jwC \newline % Row Count 12 (+ 1) {\bf{Complex Numbers with Impedance}} \newline % Row Count 13 (+ 1) Z = R + jx = |Z| \textless{} (theta) \newline % Row Count 14 (+ 1) |Z| = sqrt(R\textasciicircum{}2\textasciicircum{} + X\textasciicircum{}2\textasciicircum{}) \newline % Row Count 15 (+ 1) (theta) = tan\textasciicircum{}-1\textasciicircum{}(X / R) \newline % Row Count 16 (+ 1) R = |Z|*cos(theta) \newline % Row Count 17 (+ 1) X = |Z|*sin(theta)% Row Count 18 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Chapter 10 - AC Circuits}} \tn \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Analyzing AC Circuits}} \newline % Row Count 1 (+ 1) Step 1: Transform circuit to phasor or frequency domain \newline % Row Count 3 (+ 2) Step 2: Solve Using Circuit Techniques \newline % Row Count 4 (+ 1) Step 3: Transform phasor ==\textgreater{} time domain% Row Count 5 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}