

CircuitsFinal2014 Cheat Sheet by Lini via cheatography.com/21323/cs/4073/

Chapter 1 - Basics

- Electric current = (i): time rate of change of charge, measured in amperes (A).
- Charge = (q): integral of i
- Voltage (or potential difference)
- = (V): energy required to move a unit charge through an element
- **Power** = (W): $vi = (i^2)R$
- Passive sign convention: when the current enters through the positive terminal of an element (p = +vi)

Remember:

- +Power absorbed = -Power supplied --> sum of power in a circuit = 0
- Energy (J) = integral of P

Chapter 2

circuit.

Ohms Law: v=iR
Conductance (G) = 1/R = i/v
Branch: single element such as
a voltage source or a resistor.
Node: point of connection
between two or more branches
Loop: any closed path in a

Kirchhoff's current law (KCL): algebraic sum of currents entering a node (or a closed boundary) is zero.

Chapter 2 (cont)

Kirchhoff's voltage law (KVL): algebraic sum of all voltages around a closed path (or loop) is

Voltage D: v1 = ((R1) / (R1 + R2)) * v

Voltage D: v2 = ((R2 / (R1 + R2))

Current D: i1 = (R2 * i) / (R1 +

R2)

Current D: i2 = (R1 * i) / (R1 + R2)

Chapter 3 - Methods of Analysis

Nodal Analysis: want to fine the node voltages

Step 1:

select reference node

- assign voltages v1 --> vn to remaining nodes

Step 2:

apply KCL to each node

- want to express branch currents in

terms of voltage

Step 3:

solve for unknowns

Important:

current flows from high to low (+ ==> -)

SuperNode Properties

- 1. The voltage source inside the supernode provides a constraint equation needed to solve for the node voltages
- 2. Supernode had no voltage of its own
- Supernode requires the application of both KCL and KVL Mesh Analysis

Chapter 3 - Methods of Analysis (cont)

Step 1:

Assign mesh currents or loops Step 2:

Apply KVL

- use OHMS LAW to express voltages in terms of the mesh current

Step 3:

Solve for the unknown

Supermesh

- when two meshes have an independent or dependent CURRENT source between them

Chapter 4 - Circuit Theorems

Superposition

principal states that the
VOLTAGE ACROSS or
CURRENT THROUGH an
element in a linear circuit is the
SUM of the VOLTAGES OR
CURRENTS that are caused
after solving for each INDEPENDENT source separately
How to solve a superposition
circuit

Step 1: Turn OFF ALL independent sources except for ONE ==> find voltage or current
Step 2: Repeat above for all other independent sources
Step 3: Add all voltages/currents together to find final value

Thevenin's Theorem

V(th) = V(oc)

Chapter 4 - Circuit Theorems (cont)

circuit with Load: I(L) = V(th) / (R(th) + R(L)) ==> V(L) = R(L) / (L) ==> (R(L) / ((R(th) + R(L))) / ((th))

Norton's Theorem

R(n) = R(th)

I(n) = i(sc) ==> (sc) = short circuit

I(n) = V(th) / R(th)

Maximum Power Transfer

max power is transferred to the LOAD RESISTOR when the LOAD RESISTOR is EQUAL to the THEVENIN RESISTANCE: R(L) = R(th) $p(max) = V(th)^2 / 4R(th)$

Chapter 6 - Capacitors and Inductors

Capacitors

q = C * v

capacitance: ratio of the charge on one plate to the voltage difference between the two plates

i(t) = C(dv/dt)

v(t) = 1/C [Integral: i(T)dT + v(t0))]

T = time constant energy (w) = .5Cv²

Important:

VOLTAGE of a capacitor cannot change instantaneously

Capacitors in Series: 1 / Ceq = 1/C1 + 1/C2 + 1/Cn

Capacitors in Parallel: Ceq = C1

+ C2 + Cn Inductors v = L(di / dt)

By

By Lini cheatography.com/lini/

Published 8th May, 2015. Last updated 12th May, 2016. Page 1 of 3. Sponsored by **Readable.com**Measure your website readability!

https://readable.com

CircuitsFinal2014 Cheat Sheet by Lini via cheatography.com/21323/cs/4073/

Chapter 6 - Capacitors and Inductors (cont)

i = (1/L) [Integral: (v(T)dT + i(t0)]energy (w) = $.5Li^2$

Important:

CURRENT through an inductor cannot change instantaneously

Inductors in Series:

Leq = L1 + L2 + Ln

Inductors in Parallel:

1/Leq = 1/L1 + 1/L2 + 1/Ln

Chapter 7 - First Order Circuits

Source Free RC Circuits

v(t) = V0 * e^{-t/T} ==> T = RC How to Solve SOURCE FREE RC CIRCUITS

Step 1: Find v0 = V0 across the capacitor

Step 2: Find T (time constant)

Source Free RL Circuits

 $i(t) = 10 * e^{-t/T} ==> T = L / R$ $vr(t) = iR = 10 * Re^{-t/T}$

How to Solve SOURCE FREE RL CIRCUITS

Step 1: Find i(0) = 10 through the inductor

Step 2: Find T (time constant)

Step response of an RC circuit

v(t) = V0 when t < 0 $v(t) = Vs + (V0 - Vs)e^{-t/T}$ when t > 0

0

 $v = vn + vf ==> vn = V0e^{-t/T}, vf = Vs(1-e^{-t/T})$

OR

v(t) = v(infinity) + [(v(0) - v(infi $nity)]e^{-t/T}$

Chapter 7 - First Order Circuits (cont)

How to solve a STEP RESPONSE OF AN RC CIRCUIT

Step 1: Find initial capacitor voltage v0 (t < 0)

Step 2: Find final capacitor voltage v(in) (t > 0)

Step 3: Find T (time constant) (t

Step response of an RL circuit

 $i(t) = i(infiniti) + [i(0) - i(infinity)]e^{-t/T}$

How to solve a STEP RESPONSE OF AN RL CIRCUIT

Step 1: Find initial inductor current i0 (t = 0)

Step 2: Find final final inductor current i(inf) ==> (t > 0)

Step 3: Find T (time constant) (t > 0)

Chapter 8 - Second Order Circuits

Source Free RLC Circuits

v(0) = 1/C [integral (idt = v0) from 0 to -infinity]

i(0) = I(0)

Determining Dampness

(alpha) = R / (2L)

(omega w0) = 1 / sqrt(LC)

1 - Overdamped (a > w0)

 $i(t) = Ae^{s1t} + Be^{s2t}$

2 - Critically Damped (a = w0)

s1 = s2 = a

 $i(t) = (A + Bt)e^{-at}$

3 - Underdamped (a < w0)

 $i(t) = e^{-at}(A\cos(w0t) + B\sin(w0t))$

Chapter 8 - Second Order

Source Free Parallel Circuits

roots of characteristic euqation $s1,2 = -a (+-) sqrt(a^2 + w0^2)$ a = 1/(2RC)w0 = 1/sqrt(LC)

4 Overdenned (c.)

1 - Overdamped (a > w0)

 $i(t) = Ae^{s1t} + Be^{s2t}$

2 - Critically Damped (a = w0)

s1 = s2 = a

 $i(t) = (A + Bt)e^{-at}$

3 - Underdamped (a < w0)

 $i(t) = e^{-at}(A\cos(wd(t)) + B\sin(w-d(t)))$

Step Response of a SERIES

RLC Circuit

1 - Overdamped (a > w0)

 $v(t) = Vs + Ae^{s1t} + Be^{s2t}$

2 - Critically Damped (a = w0)

s1 = s2 = a

 $v(t) = Vs + (A + Bt)e^{-at}$

3 - Underdamped (a < w0)

 $v(t) = Vs + e^{-at}(Acos(wd(t)) + Bsin(wd(t)))$

Step Response of a PARALLEL

RLC Circuit

1 - Overdamped (a > w0)

 $i(t) = Is + Ae^{s1t} + Be^{s2t}$

2 - Critically Damped (a = w0)

s1 = s2 = a

 $i(t) = Is + (A + Bt)e^{-at}$

3 - Underdamped (a < w0)

 $i(t) = Is + e^{-at}(Acos(wd(t)) +$

 $\mathsf{Bsin}(\mathsf{wd}(\mathsf{t})))$

Chapter 9 - Sinusoids and Phasors

w = omega

T = 2*pie / w

freq = 1 / T (Hertz)

v(t) = v(m)*sin(wt + theta)

v1(t) = v(m)*sin(wt)

v2(t) = v(m)*sin(wt + theta)

sin(A +- B) = sinAcosB +-

cosAsinB

cos(A +- B) = cosAcosB +-

sinAsinB

Acos(wt) + Bsin(wt) = C*cos(wt -

theta)

 $C = \operatorname{sqrt}(A^2 + B^2)$

theta = tan^{-1} (B/A)

Complex Numbers

rectangular form: z = x + jy

polar: z = r < (theta)

expolar: $z = re^{j(theta)}$

sin: r (cos(theta) + j*sin(theta))

z = x + jy

z1 = x1 + jy1 == r1 < (theta)1

z2 = x2 + jy2 == r2 < (theta)2

operations

addition: z1 + z2 == (x1 + x2) +

j*(y1 + y2)

subtraction: z1 - z2 == (x1 - x2)

+ j*(y1 - y2)

multiplication: z1z2 == r1r2 <

((theta)1 + (theta)2)

division: z1/z2 == r1/r2 <

((theta)1 - (theta)2)

reciprocal: 1/z = 1/r < -(theta)

square: sqrt(z) = sqrt(r) <

(theta)/2

ob acto aron by com/lini/

Published 8th May, 2015. Last updated 12th May, 2016. Page 2 of 3. Sponsored by Readable.com

Measure your website readability!

la 44 m a 1 // m a a al a la la mara mara

CircuitsFinal2014 Cheat Sheet by Lini via cheatography.com/21323/cs/4073/

Chapter 9 - Sinusoids and Phasors (cont)

complex conjugate: $z^* = x - jy = r$ < -(theta) = $re^{-j(theta)}$

real vs. imaginary

 $e^{+-j(theta)} = cos(theta) +- j*sin(-$

theta)

cos(theta) = REAL

jsin(theta) = IMAGINARY

voltage-current relationship

R v = Ri (time domain) v = RI

(frequency domain)

L v = L(di/dt) (time) v = jwLI

C i = C(dv/dt) (time) V = I / jwC

Impedance vs. admittance

RZ = R (impedance) Y = 1 / R

IZ = jwLY = 1/jwL

CZ = 1 / jwCY = jwC

Complex Numbers with

Impedance

Z = R + jx = |Z| < (theta)

 $|Z| = \operatorname{sqrt}(R^2 + X^2)$

 $(theta) = tan^{-1}(X / R)$

 $R = |Z|^* cos(theta)$

X = |Z|*sin(theta)

Chapter 10 - AC Circuits

Analyzing AC Circuits

Step 1: Transform circuit to

phasor or frequency domain

Step 2: Solve Using Circuit

Techniques

Step 3: Transform phasor ==>

time domain

By **Lini**

cheatography.com/lini/

Published 8th May, 2015. Last updated 12th May, 2016. Page 3 of 3. Sponsored by **Readable.com**Measure your website readability!