Cheatography

Linear Algebra (MATH232) Cheat Sheet Cheat Sheet by linAlgCheat via cheatography.com/87824/cs/20238/

VECTORS

2 vectors equal <-> same magnitude + same direction
norm/magnitude/length of vector $ v = sqrt(v_1^2 + + v_n^2)$
unit vector -> v = 1. (v / v)
cv = c v
distance d(u,v) = u-v
Dot product u•v = (u_1v_1 + + u_nv_n)
n cos(theta) = u•v / (u v)
u&v are orthagonal when dot(u,v) = u•v = 0

Equations of Lines/Planes

vector form	$\mathbf{x} = \mathbf{x}_0 + \mathbf{t}\mathbf{v}$
parametric in R ²	$x = x_0 + ta, y = y_0 + tb$
parametric in R ³	x = x_0 + ta, y = y_0 + tb, z = z_0 +tc
General form of plane R ³	Ax + By + Cz = D
point normal eq of a plane	n • (x - x_0)
vector eq of a plane	x = x_0 + sv_1 + tv_2

Inverse Matrices

Inversion Algorithm

 $[\mathsf{A} \mid \mathsf{I}] \rightarrow \dots [\mid] \dots \rightarrow [\mid \mathsf{A}^{\mathsf{-1}}]$

Invertible Matrix Theorem

Invertible Matrix Theorem

By linAlgCheat cheatography.com/linalgcheat/

Not published yet. Last updated 9th August, 2019. Page 1 of 1.

EigenSTUFF

Invertible Matrix Theorem

2. The RREF of A is Identity

of elementary matrices.

4. Ax = 0 has only the trivial

5. A**x** = **b** has exactly one solution for every vector **b** in Rⁿ:

6. $A\mathbf{x} = \mathbf{b}$ is consisten for every

7. The column vectors of A are

10. $\lambda = 0$ is not an eigenvalue of

3. A can be written as a product

lent.

matrix.

1. A is invertible.

solution: **x** = **0**

vector **b** in Rⁿ.

linearly independent.
8. The row vectors of A are linearly independent.
9. det(a) ≠ 0.

11. T_A is one-to-one.12. T A is onto.

13. The column vectors of A

14. The row vectors of A span

15.The column vectors of A form

16.The row vectors of A form a

19. A has full column rank.

 $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}.$

Α.

span Rⁿ.

a basis for Rⁿ.

basis for Rⁿ.

17. rank(A) = n 18. nullity(A) = 0

Rⁿ.

If A is an n x n matrix, and if T_A is the linear operator on Rⁿ with standard matrix A, then the following statements are equiva-

The scalar lambda(λ) is called
an Eigenvalue of A when there
is a nonzero vector x such that
$Ax = \lambda x.$
Vector x is an Eigenvector of A
corresponding to λ .
The set of all eigenvectors with
the zero vector is a subspace of

Rⁿ called the eigenspace of λ.
1. Find Eigenvalues: det(λI - A)

= 0 2. Find Eigenvectors: $(\lambda I - A)x = 0$

If A is a triangular matrix then its eigenvalues are on its main diagonal

Sponsored by **Readable.com** Measure your website readability! https://readable.com