

Conditions that Drive a Chemical Reaction

Concentration

increase (reactants) - increase number of collisions - increase reaction rate

Temperature

increase temperature - increase the energy of each molecule - increase collision and further successful collisions - increase reaction rate

Catalysts

- substance that speeds up the rate of reaction by lowering the activation energy (lower E_a - faster reaction)
- recovered unchanged in a reaction
- does not appear in the product

Uncatalyzed reaction

higher E_a - slower reaction

Catalyzed reaction

lower E_a - faster reaction

Chemical Equilibrium

chemical reactions are **often reversible**

Ex.

- reactants create products (**forward** reaction - moving to the **right**)
- products can also form reactants (**reverse** reaction - moving to the **left**)

Equilibrium

reversible reactions reach **equilibrium**

- rate of the **forward** reaction = rate of the **reverse** reaction

Equilibrium Constant (K)

- characteristic value for a given reaction at a given temperature
- concentration is key = number of moles in a given volume

Calculating K

calculate K for the reaction between the general reactants A_2 and B_2 . The concentrations mol/L = Molar (M) at equilibrium are as follows:

$$(A_2) = 0.25 \text{ M}$$

$$(B_2) = 0.25 \text{ M}$$

$$(AB) = 0.50 \text{ M}$$

$$A_2 + B_2 \rightleftharpoons 2AB$$

$$K = \frac{(AB)^2}{(A_2)(B_2)} = \frac{(0.50)^2}{(0.25)(0.25)} = \frac{(0.50)(0.50)}{0.0625} = 0.25 / 0.0625 = 4.0$$

Chemical Reaction Kinetics

Chemical reactions occur when molecules collide

Requirements:

- the molecules have to come close enough to interact
- have to have the proper orientation when they collide
- the molecules colliding have to have sufficient energy, since the kinetic energy from a moving molecule is used to break bond

most collisions do NOT result in a chemical reaction

The transition state in a chemical reactants occur **before** formation of the products

- once adequate reaction connections are met a reaction will occur
- reactions occur in steps. Often partial bonds between the molecules, and in the process creating a transition state
- transition state is higher in energy due to repulsive forces of electrons between all the three atoms

Steps:

Reactants

Transition state

Products

Energy Diagrams

illustrates energy changes

- the height of the energy barrier indicates the **rate** of reaction (E_a)

Activation energy (E_a)

- minimum amount of energy needed for a reaction to occur

High = SLOW (few molecules can transition)

Low = FAST (lots of molecules can transition)

Exothermic Reaction

the average energy of the reactants is **higher** than that of the products, indicating that energy has been released in the reaction

Endothermic Reaction

the average energy of the reactants is **less** than that of the products, indicating that energy has been absorbed in the reaction

By **Liliaeve**

cheatography.com/liliaeve/

Not published yet.

Last updated 20th November, 2025.

Page 2 of 2.

Sponsored by **ApolloPad.com**

Everyone has a novel in them. Finish

Yours!

<https://apollopad.com>