Cheatography

Microarray Cheat Sheet by Nimisha (lemonbuzz) via cheatography.com/132716/cs/40278/

Introduction	
Principle	Amount of hybridisation detected is proportional to no. of fragments in sample
Microarray	DNA probes bound to glass slide, to which sample DNA fragments can be hybridised
Probes	Oligonucleotides, ink-jet printed onto slides (Agilent) or synthesised in-situ (Affymetrix)
Sample	labelled ssDNA or antisense RNA

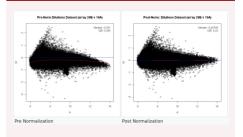
Replicates	
Technical replicate	Repeated measurements or procedures using the same biological sample to evaluate precision and reproducibility
Biological replicate	Use of multiple independent biological samples to account for biological variability

One and Two Color Arrays	
One Color Array	Each sample loaded into a separate microarray
Two Color Array	Two samples, labelled differ- ently, loaded onto same microarray in same amounts. Competitive hybridisation.

Data Preproc	essing
Background Correction	 Adjust for non-specific hybridisation mismatch probes (Affymetrix) exogenous negative control spots remove features with lower intensity than background
Log Transf- ormation	Improves data distribution for classical statistical analysis

Data Preprocessing (cont)

Data Preprocessing (cont)	
Normal- isation	Removes systematic effects due to technical differences, which aren't due to biological differences
Normalisation	
Normalisation	1
Within- Array Normalis- ation	Two-color microarrays; align two channels for each array
Betwee- nArray Normalis- ation	One-color microarrays; Single channel platforms; Quantile normalisation, Cyclic Loess
Sources of Bias	Dye bias, Array bias, Spatial bias
Dye Swap Design	pair of samples compared twice with reversed dye
Reference	Each sample hybridised


sample Within Array Normalisation Sources of - Differential dye incorp-Bias oration - Diff. emission response to excitation - Non-uniform focusing across the array Correction 1. LR of Cy3 vs Cy5 intensity of diff 2. LR of log ratio against avg. intensity (MA plot) responses of Cy3 and 3. Non-linear (Loess) Cy5 regression of log ratio against channels avg. intensity

against a common reference

Design

Published 13th September, 2023. Last updated 16th September, 2023. Page 1 of 2.

MA plots

MA plot - Interpretation	
Vertical axis	Log ratio (R/G) = M i.e. log fold change; M = log2 (condA exp / condB exp)
Horiontal axis	average log-intensity between two cond; mean(condA exp + condB exp)
Non-zero intercept	One channel is consistently brighter than the other
Slope not equal to 1	One channel responds more strongly at high intensities than other
Slope not straight line	Non-linear relation b/w intens- ities of two channels

Loess Regression	
Working	- local reg in overlapping
	windows of data
	- join the regression to form a
	smooth curve

Between Array Normalisation	
Types	Scaling, centering, distribution normalisation
Scaling	Ensure mean/median of all distributions are equal; Subtract overall mean log intensity from each log intensity
Centering	Ensure that all the distribution's mean and SD are equal

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

By Nimisha (lemonbuzz)

cheatography.com/lemonbuzz/

Microarray Cheat Sheet by Nimisha (lemonbuzz) via cheatography.com/132716/cs/40278/

Cheatography

Between Array Normalisation (cont)	
Quantile	- sort each array in order
normal-	- average across rows
isation	- sort avg values in original
	order
Explan-	Covariates (quantitative
atory	measurements) and factors
variables	(categorical variables)
Levels	Unique values within a factor
Matrices	

Maurices	
Design or Model matrix	Describes the experimental design of the microarray experiment
Contrast matrix	Defines specific comparisons of interest b/w different experi- mental conditions i.e. defines the hypotheses to be tested
Types of design matrices	 Mean Reference Model (with intercept) Means model (wihout intercept)
Means model	Mean gene expression levels compared independently for each sample group
Mean reference model	One sample group set as baseline or reference; gene exp in other groups compared relative to reference

Design Matrix

Contrast Matrix

cheatography.com/lemonbuzz/

By Nimisha (lemonbuzz)

Published 13th September, 2023. Last updated 16th September, 2023. Page 2 of 2.

Sponsored by CrosswordCheats.com

Learn to solve cryptic crosswords! http://crosswordcheats.com

find expressed genes in a ample/cond find diff exp across sample- /cond exp signatures of ample/cond exp signature of set of genes
rely on prev knowledge of enome seq high BG levels due to cross- yb complex normalisations eeded limited range of detection due o BG and saturation signals
determining exp or diff exp of ingle or small set of genes accurately studying protein evels and functional activity measure steady-state levels of tNA transcripts) absolute level of exp of a gene rue conc of mRNA)