Definitions	
Minimi- sation algorithm	Identifies geometries corresponding to minimum points on the energy surface
Saddle point	Highest points on the path between two minima/maxima i.e. a transition structure
At a minimum point, first derivatives are zero, and second derivatives are positive	
Parameter coordinates	Molecular mechanics - Cartesian (3N) Quantum mechanics Internal (3N-6)
Categories of min algo	1. Derivative 2. Non-derivative
Derivative methods	- Obtained analytically or numerically - Analytical preferred - If only numerical, non-derivative may be more effective
Numerical derivative	Change in energy divided by change in coordinates

Non-derivative methods	
Simplex method - Non derivative (zeroth order) - Locates minimum on energy surface by moving around like an amoeba	
Simplex	M cartesian coord => M+1 vertices M internal coord => M-5 vertices
- Direction of first derivative => Minima	
location	Magnitude of deriv. => Steepness of local slope
Movements	Reflection - Reflection and Expansion - Contraction -

By Nimisha (lemonbuzz)

cheatography.com/lemonbuzz/

Derivative methods		
- Direction of first derivative => Minima location - Magnitude of deriv. => Steepness of local slope - Second derivative => curvature of function		
Force $=-\mathrm{dV}(\mathrm{r}) / \mathrm{dr}$		
First order algos	- steepest descent - conjugate gradient	
STEEPEST DESCENT		
- moves in dir. \|	net force (walking straight downhill - both gradient and direction orthogonal 1) line search (2) arbitrary step (3) lanrange multipliers - robust when starting point is far from minimum - relieves higest energy features	
1D Line search	- bracket search - computationally expensive	
Arbitrary step	- random step size - if lower energy, step size increased by multiplication factor - higher energy, step size reduced - more steps but less function evaluations	
Cons	- forced to make right angles - path oscillates, overcorrects, and reintroduces errors	

CONJUGATE GRADIENT

- no oscillation
- gradient orthogonal but direction conjugate
- for quadratic function of M variables, min reached in M steps
- can be used from 2nd step (1st step SD)

Not published yet.
Last updated 13th December, 2023.
Page 1 of 1 .

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

