\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{Lem} \pdfinfo{ /Title (bpsy-50-chapter-3.pdf) /Creator (Cheatography) /Author (Lem) /Subject (BPSY 50: Chapter 3 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{38A327} \definecolor{LightBackground}{HTML}{F2F9F1} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{BPSY 50: Chapter 3 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{Lem} via \textcolor{DarkBackground}{\uline{cheatography.com/174040/cs/36561/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}Lem \\ \uline{cheatography.com/lem} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 17th January, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{tabularx}{17.67cm}{p{1.727 cm} p{1.727 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{SENSATION \& PERCEPTION}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{17.67cm}}{{\bf{Sensation}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{17.67cm}}{- the activation of receptors in the various sense organs.} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{17.67cm}}{* {\bf{Sensory Receptors}} - specialized forms of neurons.} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{17.67cm}}{{\bf{Sensory Thresholds}}} \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{17.67cm}}{1. Just noticeable difference (jnd or the difference threshold) - the smallest difference between two stimuli that is detectable 50 percent of the time.} \tn % Row Count 10 (+ 4) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{17.67cm}}{2. Absolute threshold - the smallest amount of energy needed for a person to consciously detect a stimulus 50 percent of the time it is present.} \tn % Row Count 13 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{17.67cm}}{Sense Organs: \newline - eyes \newline – ears \newline – nose \newline – skin \newline – taste buds} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Examples of Absolute Threshold}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lem_1673952744_1.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Subliminal Sensation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{Subliminal stimuli}} - stimuli that are below the level of \newline % Row Count 2 (+ 2) conscious awareness. \newline % Row Count 3 (+ 1) – Just strong enough to activate the sensory receptors but not \newline % Row Count 5 (+ 2) strong enough for people to be consciously aware of them. \newline % Row Count 7 (+ 2) – Limin - "threshold" \newline % Row Count 8 (+ 1) – Sublimin - "below the threshold." \newline % Row Count 9 (+ 1) – Supraliminal "above the threshold." \newline % Row Count 10 (+ 1) {\bf{Subliminal perception}} – process by why subliminal \newline % Row Count 12 (+ 2) stimuli act upon the unconscious mind, influencing \newline % Row Count 14 (+ 2) behavior% Row Count 15 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{8.635 cm} x{8.635 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{Habituation \& Sensory Adaptation}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Habituation}} - tendency of the brain to stop attending to constant, unchanging information. & {\bf{Sensory adaptation}} - tendency of sensory receptor cells to become less responsive to a stimulus that is unchanging \tn % Row Count 6 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{17.67cm}}{{\emph{Microsaccades}} - constant movement of the eyes, tiny \newline little vibrations called that people do not notice \newline consciously; prevents sensory adaptation to visual \newline stimuli.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Psychological Aspects to Light}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{- Determined by the amplitude of the wave—how high or how low the wave actually is.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Brightness}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{- is determined by the length of the wave.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Color or Hue}}} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{- refers to the purity of the color people see; mixing in black or gray would also lessen the saturation.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Saturation}}} \tn % Row Count 9 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{The {\bf{higher}} {\bf{the}} {\bf{wave}}, {\bf{the}} {\bf{brighter}} {\bf{the light}} will be. {\bf{Low}} \newline {\bf{waves}} are {\bf{dimmer}}. \newline \newline {\bf{Long wavelengths}} are found at the {\bf{red}} {\bf{end}} of the {\bf{visible}} \newline {\bf{spectrum}} (the portion of the whole spectrum of light that is visible to the human eye), whereas {\bf{shorter}} {\bf{wavelengths}} are found at the {\bf{blue}} {\bf{end}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Figure 3.1 The Visible Spectrum}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lem_1673941740_2.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{The wavelengths that people can see are only a small part of the whole \newline electromagnetic spectrum.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{5.8718 cm} x{11.3982 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{Structure of the Eye}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Cornea}} & - clear membrane that covers the surface of the eye; protects the eye and is the structure that focuses most of the light coming into the eye \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} {\bf{Radial kerototomy}} & - vision-improving technique that uses this fact by making small incisions in the cornea to change the focus in the eye. \tn % Row Count 11 (+ 5) % Row 2 \SetRowColor{LightBackground} {\bf{Aqueous humor}} & - next visual layer; clear, watery fluid that is continually replenished and supplies nourishment to the eye. \tn % Row Count 16 (+ 5) % Row 3 \SetRowColor{white} {\bf{Pupil}} & - hole through which light from the visual image enters the interior of the eye. \tn % Row Count 20 (+ 4) % Row 4 \SetRowColor{LightBackground} {\bf{Iris}} & - round muscle (the colored part of the eye) in which the pupil is located; can change the size of the pupil, letting more or less light into the eye; helps focus the image. \tn % Row Count 27 (+ 7) % Row 5 \SetRowColor{white} {\bf{Lens}} & - another clear structure behind the iris, suspended by muscles; finishes the focusing process begun by the cornea. \tn % Row Count 32 (+ 5) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{5.8718 cm} x{11.3982 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{Structure of the Eye (cont)}} \tn % Row 6 \SetRowColor{LightBackground} {\bf{Retina}} & - final stop for light in the eye. \tn % Row Count 2 (+ 2) % Row 7 \SetRowColor{white} & Contains 3 layers: {\bf{Ganglion cells}}, {\bf{Bipolar cells}}, and {\bf{Photoreceptors}} that respond to various light waves \tn % Row Count 7 (+ 5) % Row 8 \SetRowColor{LightBackground} {\bf{Rods}} & - visual sensory receptors found at the back of the retina, responsible for noncolor sensitivity to low levels of light \tn % Row Count 12 (+ 5) % Row 9 \SetRowColor{white} {\bf{Cones}} & - visual sensory receptors found at the back of the retina, responsible for color vision and sharpness of vision. \tn % Row Count 17 (+ 5) % Row 10 \SetRowColor{LightBackground} {\bf{Blind Spot}} & - area in the retina where the axons of the three layers of retinal cells exit the eye to form the optic nerve, insensitive to light. \tn % Row Count 23 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Figure 3. 2 Structure of the Eye}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lem_1673942736_3.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Light enters the eye through the cornea and pupil. The iris controls the size of \newline the pupil. From the pupil, light passes through the lens to the retina, where it is \newline transformed into nerve impulses. The nerve impulses travel to the brain along \newline the optic nerve.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Figure 3.3 The Parts Of the Retina}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lem_1673942945_4.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{(a) Light passes through ganglion and bipolar cells until it reaches and stimulates the \newline rods and cones. Nerve impulses from the rods and cones travel along a nerve pathway \newline to the brain. (b) On the right of the figure is a photomicrograph of the long, thin rods and \newline the shorter, thicker cones; the rods outnumber the cones by a ratio of about 20 to 1.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Figure 3.4 Crossing of the Optic Nerve}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{The optic nerve tissue from both eyes joins together to form the left optic tract before going on to the left occipital lobe. For the left visual field (shown in blue), the messages from both right sides of the retinas will travel along the right optic tract to the right visual cortex in the same manner.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{How the eyes work}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{- the recovery of the eye's sensitivity to visual stimuli in darkness after exposure to bright lights.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Dark adaptation}}} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{- the recovery of the eye's sensitivity to visual stimuli in light after exposure to darkness.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Light Adaptation}}} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{- theory of color vision that proposes three types of cones: red, blue, and green.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Trichromatic theory}}} \tn % Row Count 10 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{- images that occur when a visual sensation persists for a brief time even after the original stimulus is removed.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Afterimages}}} \tn % Row Count 14 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{- theory of color vision that proposes four primary colors with cones arranged in pairs: red and green, blue and yellow.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Opponent-process Theory}} Lateral geniculate nucleus (LGN) of thalamus} \tn % Row Count 19 (+ 5) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{- either have no cones or have cones that are not working at all} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Monochrome colorblindness}}} \tn % Row Count 22 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{- either the red or the green cones are not working.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Red-green Colorblindness}}} \tn % Row Count 25 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{– lack of functioning red cones.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Protanopia}}} \tn % Row Count 27 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{- lack of functioning green cones.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Deuteranopia}}} \tn % Row Count 29 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{- lack of functioning blue cones.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Tritanopia}}} \tn % Row Count 31 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{COLOR BLINDNESS IS SOMETIMES DUE TO SEX-LINKED INHERITANCE} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{SOUND}} \tn \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{• {\bf{Wavelength}} – interpreted as frequency or pitch (high, \newline % Row Count 2 (+ 2) medium, or low). \newline % Row Count 3 (+ 1) • {\bf{Amplitude}} – interpreted as volume (how soft or loud a \newline % Row Count 5 (+ 2) sound is). \newline % Row Count 6 (+ 1) • {\bf{Purity}} – interpreted as timbre (a richness in the tone \newline % Row Count 8 (+ 2) of the sound). \newline % Row Count 9 (+ 1) • {\bf{hertz}} (Hz) - cycles or waves per second, a \newline % Row Count 11 (+ 2) measurement of frequency.% Row Count 12 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{A decibel is a unit of measure for loudness.}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Structure Of the Ear}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{- short tunnel that runs from the pinna to the eardrum (tympanic membrane)} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Auditory Canal}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{- thin section of skin that tightly covers the opening into the middle part of the ear, just like a drum skin covers the opening in a drum.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Eardrum}}} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- When sound waves hit the eardrum, it vibrates and causes three tiny bones in the middle ear to vibrate.} \tn % Row Count 10 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}• Hammer • Anvil • Stirrup} \tn % Row Count 11 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{- snail-shaped structure of the inner ear that is filled with fluid} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Cochlea}}} \tn % Row Count 14 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{- rests in the basilar membrane; contains receptor cells for sense of hearing.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Organ of Corti}}} \tn % Row Count 17 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{- bundle of axons from the hair cells in the inner ear; receives neural message from the organ of Corti.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Auditory Nerve}}} \tn % Row Count 21 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Figure 3.8 structure of the ear}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{(a) This drawing shows the entire ear, beginning with the outer ear (pinna, ear canal, and \newline eardrum). The vestibular organ includes the semicircular canals and the otolith organs (inside the \newline round structures just above the cochlea). (b) The middle ear. Sound waves entering through the \newline ear canal cause the eardrum to vibrate, which causes each of the \newline three bones of the middle ear to vibrate, amplifying the sound.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Figure 3.8 (continued)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lem_1673945733_7.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{(c) The inner ear. Large spaces are filled with fluid (shown in purple) that vibrates as the oval \newline window vibrates. (d) A close-up view of the basilar \newline membrane (in dark pink) with the hair cells of the organ of Corti (in lighter pink). Notice the axons \newline (small green lines) leaving the hair cells to form the auditory nerve.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Theories Of Pitch}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{- psychological experience of sound that corresponds to the frequency of the sound waves; higher frequencies are perceived as higher pitches.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Pitch}}} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{- theory of pitch that states that different pitches are experienced by the stimulation of hair cells in different locations on the organ of Corti.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Place Theory}}} \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{- theory of pitch that states that pitch is related to the speed of vibrations in the basilar membrane volley principle theory of pitch that states that frequencies above 100 Hz cause the hair cells (auditory neurons) to fire in a volley pattern, or take turns in firing.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Frequency Theory}}} \tn % Row Count 15 (+ 7) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{- theory of pitch that states that frequencies above 100 Hz cause the hair cells (auditory neurons) to fire in a volley pattern, or take turns in firing.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Volley Principle}}} \tn % Row Count 20 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{8.1169 cm} x{9.1531 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{TYPES OF HEARING IMPAIRMENTS}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Conduction hearing impairment}} & - damaged eardrum (which would prevent sound waves from being carried into the middle ear properly), or \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} & - damage to the bones of the middle ear (sounds cannot be conducted from the eardrum to the cochlea). \tn % Row Count 10 (+ 5) % Row 2 \SetRowColor{LightBackground} {\bf{Nerve hearing impairment}} & - damage in the inner ear, or \tn % Row Count 12 (+ 2) % Row 3 \SetRowColor{white} & - damage in the auditory pathways and cortical areas of the brain. \tn % Row Count 16 (+ 4) % Row 4 \SetRowColor{LightBackground} {\bf{Surgery to help restore hearing}} & - Cochlear Implant \tn % Row Count 18 (+ 2) % Row 5 \SetRowColor{white} & - a microphone implanted just behind the ear picks up sound from the surrounding environment. \tn % Row Count 23 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{17.67cm}}{(a) In a cochlear implant, a microphone implanted just behind the ear picks up sound from the surrounding \newline environment. A speech processor, attached to the implant and worn outside the body, selects and arranges the sound picked up by the microphone. The implant itself is a transmitter and receiver, converting the signals from the speech processor into electrical impulses that are collected by the electrode array in the cochlea and then sent to the brain.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{TASTE}} \tn \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{• {\bf{Five Basic Tastes:}} \newline % Row Count 1 (+ 1) – Sweet \newline % Row Count 2 (+ 1) – Sour \newline % Row Count 3 (+ 1) – Salty \newline % Row Count 4 (+ 1) – Bitter \newline % Row Count 5 (+ 1) – "Brothy" \newline % Row Count 6 (+ 1) • {\bf{Taste buds}} \newline % Row Count 7 (+ 1) – Taste receptor cells in mouth; responsible for sense of taste \newline % Row Count 9 (+ 2) • {\bf{Gustation}} \newline % Row Count 10 (+ 1) – The sensation of a taste.% Row Count 11 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Figure 3.10 The tounge \& Taste buds}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lem_1673946974_8.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{(b) The taste bud is located inside the papillae and is composed of small cells that send signals to \newline the brain when stimulated by molecules of food.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Figure 3.10 (continued)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lem_1673947145_9.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{(c) Microphotograph of the surface of the tongue, showing two different sizes of papillae. The taste \newline buds are located under the surface of the larger red papillae, whereas the smaller and more \newline numerous papillae form a touch-sensitive rough surface that helps in chewing and moving food \newline around the mouth.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{SMELL}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{– Sense of smell.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Olfaction (olfactory sense)}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{- Areas of the brain located just above the sinus cavity and just below the frontal lobes that receive information from the olfactory receptor cells} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Olfactory Bulbs}}} \tn % Row Count 7 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{At least 1,000 olfactory receptors.}}} \tn % Row Count 8 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Figure 3.11 The Olfactory Receptors}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lem_1673948124_10.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{a) A cross section of the nose and mouth. This drawing shows the nerve fibers inside \newline the nasal cavity that carry information about smell directly to the olfactory bulb just \newline under the frontal lobe of the brain (shown in green).} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Figure 3.11 (continued)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lem_1673948265_11.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{(b) A diagram of the cells in the nose that process smell. The olfactory bulb is on top. Notice the \newline cilia, tiny hairlike cells that project into the nasal cavity. These are the receptors for the sense of \newline smell.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{SOMESTHETIC SENSES}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{- the body senses consisting of the skin senses, the kinesthetic sense, and the vestibular senses.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Somesthetic Senses}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{- Means "body"} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Soma}}} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{– feeling} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Esthetic}}} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{- the sensations of touch, pressure, temperature, and pain.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Skin senses}}} \tn % Row Count 10 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{- pain signals must pass through a "gate" located in the spinal cord.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Gate-control theory}}} \tn % Row Count 13 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{- sense of the location of body parts in relation to the ground and each other.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Kinesthetic sense}}} \tn % Row Count 16 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{– Proprioceptive receptors (proprioceptors)}}} \tn % Row Count 18 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{- the sensations of movement, balance, and body position sensory conflict theory an explanation of motion sickness in which the information from the eyes conflicts with the information from the vestibular senses, resulting in dizziness, nausea, and other physical discomforts.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Vestibular senses}}} \tn % Row Count 25 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{When people grasp two braided pipes–one with cold water running through it, the other with warm water–the sensation is "very hot" and painful.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Perception \& Constancies}} \tn \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{• {\bf{Perception}} \newline % Row Count 1 (+ 1) – The method by which the sensations experienced at any given moment are interpreted and organized in some meaningful fashion. \newline % Row Count 4 (+ 3) • {\bf{Size constancy}} \newline % Row Count 5 (+ 1) – The tendency to interpret an object as always being the same actual size, regardless of its distance. \newline % Row Count 8 (+ 3) • {\bf{Shape constancy}} \newline % Row Count 9 (+ 1) – The tendency to interpret the shape of an object as being constant, even when its shape changes on the retina. \newline % Row Count 12 (+ 3) • {\bf{Brightness constancy}} \newline % Row Count 13 (+ 1) – The tendency to perceive the apparent brightness of an object as the same even when the light conditions change. \newline % Row Count 16 (+ 3) • {\bf{Size constancy}} \newline % Row Count 17 (+ 1) - The tendency to interpret the size of an object as being constant, even when its shape changes on the retina.% Row Count 20 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Gestalt Principles}} \tn \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{• {\bf{Figure–ground}} \newline % Row Count 1 (+ 1) – The tendency to perceive objects, or figures, as existing on a background. \newline % Row Count 3 (+ 2) • {\bf{Reversible figures}} \newline % Row Count 4 (+ 1) – Visual illusions in which the figure and ground can be reversed. \newline % Row Count 6 (+ 2) • {\bf{Similarity}} \newline % Row Count 7 (+ 1) – The tendency to perceive things that look similar to each other as being part of the same group. \newline % Row Count 10 (+ 3) • {\bf{Proximity}} \newline % Row Count 11 (+ 1) – The tendency to perceive objects that are close to each other as part of the same grouping. \newline % Row Count 13 (+ 2) • {\bf{Closure}} \newline % Row Count 14 (+ 1) – The tendency to complete figures that are incomplete. \newline % Row Count 16 (+ 2) • {\bf{Continuity}} \newline % Row Count 17 (+ 1) – The tendency to perceive things as simply as possible with a continuous pattern rather than with a complex, broken-up pattern. \newline % Row Count 20 (+ 3) • {\bf{Contiguity}} \newline % Row Count 21 (+ 1) – The tendency to perceive two things that happen close together in time as being related.% Row Count 23 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Figure 3.16 Gestalt principles of grouping}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lem_1673949859_14.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Development Of Perception}} \tn \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{• {\bf{Depth perception}} - the ability to perceive the world in three dimensions. \newline % Row Count 2 (+ 2) • {\bf{Studies of depth perception}} – Visual cliff experiment. \newline % Row Count 4 (+ 2) • {\bf{Monocular cues (pictorial depth cues)}} – cues for perceiving depth based on one eye only. \newline % Row Count 6 (+ 2) – {\bf{Linear perspective}} – the tendency for parallel lines to appear to converge on each other. \newline % Row Count 8 (+ 2) – {\bf{Relative size}} - perception that occurs when objects that a person expects to be of a certain size appear to be small and are, therefore, assumed to be much farther away. \newline % Row Count 12 (+ 4) – {\bf{Interposition (overlap)}} - the assumption that an object that appears to be blocking part of another object is in front of the second object and closer to the viewer. \newline % Row Count 16 (+ 4) • {\bf{Aerial perspective}} - the haziness that surrounds objects that are farther away from the viewer, causing the distance to be perceived as greater. \newline % Row Count 20 (+ 4) • {\bf{Texture gradient}} - the tendency for textured surfaces to appear to become smaller and finer as distance from the viewer increases. \newline % Row Count 23 (+ 3) • {\bf{Motion parallax}} - the perception of motion of objects in which close objects appear to move more quickly than objects that are farther away. \newline % Row Count 26 (+ 3) • {\bf{Accommodation}} - as a monocular clue, the brain's use of information about the changing thickness of the lens of the eye in response to looking at objects that are close or far away. \newline % Row Count 30 (+ 4) } \tn \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Development Of Perception (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{• {\bf{Binocular cues}} - cues for perceiving depth based on both eyes. \newline % Row Count 2 (+ 2) – {\bf{{\emph{Convergence}}}} - the rotation of the two eyes in their sockets to focus on a single object, resulting in greater convergence for closer objects and lesser convergence if objects are distant. \newline % Row Count 6 (+ 4) – {\bf{Binocular disparity}} - the difference in images between the two eyes, which is greater for objects that are close and smaller for distant objects.% Row Count 10 (+ 4) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{6.5626 cm} x{10.7074 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{Perceptual Illusions}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{The Herman grid}} & – is possibly due to the response of the primary visual cortex. \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{Müller-Lyer illusion}} & - illusion of line length that is distorted by inward-turning or outward-turning corners on the ends of the lines, causing lines of equal length to appear to be different. \tn % Row Count 11 (+ 8) % Row 2 \SetRowColor{LightBackground} {\bf{Moon illusion}} & – the moon on the horizon appears to be larger than the moon in the sky. \tn % Row Count 15 (+ 4) % Row 3 \SetRowColor{white} & - Apparent distance hypothesis \tn % Row Count 17 (+ 2) % Row 4 \SetRowColor{LightBackground} {\bf{Autokinetic Effect}} & - a small, stationary light in a darkened room will appear to move or drift because there are no surrounding cues to indicate that the light is not moving. \tn % Row Count 24 (+ 7) % Row 5 \SetRowColor{white} {\bf{stroboscopic motion}} & - seen in motion pictures, in which a rapid series of still pictures will appear to be in motion. \tn % Row Count 29 (+ 5) % Row 6 \SetRowColor{LightBackground} {\bf{phi phenomenon}} & - lights turned on in a sequence appear to move. \tn % Row Count 32 (+ 3) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{6.5626 cm} x{10.7074 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{Perceptual Illusions (cont)}} \tn % Row 7 \SetRowColor{LightBackground} {\bf{Rotating Snakes}} & – is due in part to eye movements. \tn % Row Count 2 (+ 2) % Row 8 \SetRowColor{white} {\bf{The Enigma}} & - are due in part to microsaccades \tn % Row Count 4 (+ 2) % Row 9 \SetRowColor{LightBackground} & - Ame's room illusion \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Factors that Influence Perception}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{- the tendency to perceive things a certain way because previous experiences or expectations influence those perceptions.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Perceptual set (perceptual expectancy)}}} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{- the use of preexisting knowledge to organize individual features into a unified whole.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Top-down processing}}} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{- the analysis of the smaller features to build up to a complete perception.} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Bottom-up processing}}} \tn % Row Count 10 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \end{document}