

MVE137 - Chalmers University Cheat Sheet

by Delegado FM (Learningbizz) via cheatography.com/73767/cs/34116/

Basic Probat	oility Definitions
Sample Space (Ω)	Set of all possible outcomes of a random experiment.
Event	Outcome of a random experiment (inside Ω)
σ-field	The allowable events constitute a family of sets F, usually referred to as σ -field. Each set in F is a subset of the sample space Ω .
Probability measure (P)	A probability measure on (Ω, F) is a function $P: F \rightarrow [0, 1]$ that satisfies the following two properties: 1. $P[\Omega] = 1$ 2. The probability of the union of a collection of disjoint members is the sum of its probabilities
Probability space	(Ω, F, P)
Basic properties of probab- ility measures	$P[\varnothing] = 0$ $P[A^-] = 1 - P[A]$ If $A \subseteq B$, then $P[B] = P[A] + P[B \setminus A] \ge P[A]$ $P[A \cup B] = P[A] + P[B] - P[A \cap B]$
Inclusion Exclusion Principle (comes from last basic property of probability measures)	Given sets A1, A2 P[union(Ai)] ≤ sum(P[Ai]) When the two events are disjoint, the inequality is = as they don't share any common space: P[A ∩ B] = 0

Basic Probability Definitions (cont)		
Sampling strategy	Choose repeatedly a random number in Ω	
Sampling with replac- ement	Select random numbers in Ω , without taking into account which ones you've already tested. Therefore, there will be some numbers tested multiple times	
Sampling without replac- ement	Select random numbers in Ω taking into account which ones you've already used. Therefore, you won't run the algorithm with the same number more than once	
Independent (events or family)	Two events are independent if: $P[A \cap B] = P[A] P[B]$ It also applies to families $\{Ai, i \in I\}$	
Pairwise	To form all possible pairs (two items at a time) from a set	
Pairwise indepe- ndent (family or events)	A family or events are pairwise independent if: P[Ai n Aj] = P[Ai] P[Aj] for all i != j In english terms, a family or events is pairwise independent if any of its possible pairs is independent of each other. For example: P(AnB)=P(A)P(B) P(AnC)=P(A)P(C)	
	$P(B \cap C) = P(B)P(C)$	

Basic Pro	bability Definitions (cont)
Mutually	More than two events (i.e.
indepe-	A,B,C) are mutually independent
ndent	if:
(events)	1. They are pairwise independent 2. They meet the condition: $P(A \cap B \cap C) = P(A) \times P(B) \times P(C)$ In plain english, events are mutually independent if any event is independent to the other events
Condit- ional Probab- ility	If P[B] > 0, the conditional probability that A occurs give that B occurs is: P[A B]=P[-A∩B]/P[B]
Conditional Probability (independent events)	If A and B are independent events, then: $P[A B] = P[A \cap B]/P[B] =$ $(P[A]*P[B])/P[B] = P[A]$
Law of Total Probab- ility	Let e1en be partitions of Ω (a collection of ALL the sets in Ω which are independent of each other). Also assuming P[ei] > 0 for all i. The probability of A can be written as: P[A] = sum(i=1,n)(P[A ei]*P[ei]) In english, it's the sum of all the possible scenarios in which A can occur

By **Delegado FM** (Learningbizz)

cheatography.com/learningbizz/

Not published yet. Last updated 25th September, 2022. Page 1 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

MVE137 - Chalmers University Cheat Sheet by Delegado FM (Learningbizz) via cheatography.com/73767/cs/34116/

Basic Probability Definitions (cont)

Bayes Assuming e1...en be **partitions**

Theorem of Ω

$$\begin{split} & P[ej|B] = P[Ej \cap B]/P[B] = \\ & (P[B|Ej]/P[Ej])/(sum(i=1,n)(P[-1])/(sum(i=1,n)) \end{split}$$

B/ei]P[ei])

It's basically using conditional theory and then applying conditional theory again for the top part and law of total probability

in the lower part

Discrete Random Variables and Expectation

Random A random variable X on a $\mbox{Variable} \quad \mbox{sample space } \Omega \mbox{ is a real-valued} \\ \mbox{(measurable) function on } \Omega; \mbox{ that}$

is $X : \Omega \to R$.

Denoted as upper case in this course and real numbers as

lower case

Discrete A discrete random variable is a random variable that outputs

Variable only a finite or countably infinite number of values

(i.e. number of kids in a family,

Probability that Sum of all the events w in Ω

range between 1 and x)

which X(w) = x

X=a

Discrete Random Variables and Expectation (cont)

Indeperation Two random variables X and Y ndence are independent if and only if: of $P[(X = x) \cap (Y = y)] = P[X = x]$ -

random *P[Y=y]

variables for all values x and y

Mutually Like mutually independent indepe- events

ndent

random variables

Expect- It is a weighted average of the ation values assumed by the random (mean) variable, taking into account the

probability of getting that value. The expectation of a discrete random variable X, denoted by

E[X] is given by

 $\mathsf{E}[\mathsf{X}] = \mathsf{sum}(\mathsf{i} \texttt{=} \mathsf{x}, \mathsf{X})(\mathsf{x}^*\mathsf{P}[\mathsf{X} \texttt{=} \mathsf{x}])$

By **Delegado FM** (Learningbizz)

cheatography.com/learningbizz/

Not published yet. Last updated 25th September, 2022. Page 2 of 2. Sponsored by **CrosswordCheats.com** Learn to solve cryptic crosswords! http://crosswordcheats.com