MVE137 - Chalmers University Cheat Sheet by Delegado FM (Learningbizz) via cheatography.com/73767/cs/34116/ | Basic Probat | oility Definitions | |--|--| | Sample Space (Ω) | Set of all possible outcomes of a random experiment. | | Event | Outcome of a random experiment (inside Ω) | | σ-field | The allowable events constitute a family of sets F, usually referred to as σ -field. Each set in F is a subset of the sample space Ω . | | Probability
measure
(P) | A probability measure on (Ω, F) is a function $P: F \rightarrow [0, 1]$ that satisfies the following two properties:
1. $P[\Omega] = 1$
2. The probability of the union of a collection of disjoint members is the sum of its probabilities | | Probability space | (Ω, F, P) | | Basic
properties
of probab-
ility
measures | $P[\varnothing] = 0$
$P[A^-] = 1 - P[A]$
If $A \subseteq B$, then $P[B] = P[A] + P[B \setminus A] \ge P[A]$
$P[A \cup B] = P[A] + P[B] - P[A \cap B]$ | | Inclusion Exclusion Principle (comes from last basic property of probability measures) | Given sets A1, A2 P[union(Ai)] ≤ sum(P[Ai]) When the two events are disjoint, the inequality is = as they don't share any common space: P[A ∩ B] = 0 | | Basic Probability Definitions (cont) | | | |---|--|--| | Sampling strategy | Choose repeatedly a random number in Ω | | | Sampling
with
replac-
ement | Select random numbers in Ω , without taking into account which ones you've already tested. Therefore, there will be some numbers tested multiple times | | | Sampling
without
replac-
ement | Select random numbers in Ω taking into account which ones you've already used. Therefore, you won't run the algorithm with the same number more than once | | | Independent (events or family) | Two events are independent if: $P[A \cap B] = P[A] P[B]$ It also applies to families $\{Ai, i \in I\}$ | | | Pairwise | To form all possible pairs (two items at a time) from a set | | | Pairwise
indepe-
ndent
(family or
events) | A family or events are pairwise independent if: P[Ai n Aj] = P[Ai] P[Aj] for all i != j In english terms, a family or events is pairwise independent if any of its possible pairs is independent of each other. For example: P(AnB)=P(A)P(B) P(AnC)=P(A)P(C) | | | | $P(B \cap C) = P(B)P(C)$ | | | Basic Pro | bability Definitions (cont) | |--|--| | Mutually | More than two events (i.e. | | indepe- | A,B,C) are mutually independent | | ndent | if: | | (events) | 1. They are pairwise independent 2. They meet the condition: $P(A \cap B \cap C) = P(A) \times P(B) \times P(C)$ In plain english, events are mutually independent if any event is independent to the other events | | Condit-
ional
Probab-
ility | If P[B] > 0, the conditional probability that A occurs give that B occurs is: P[A B]=P[-A∩B]/P[B] | | Conditional Probability (independent events) | If A and B are independent
events, then:
$P[A B] = P[A \cap B]/P[B] =$ $(P[A]*P[B])/P[B] = P[A]$ | | Law of
Total
Probab-
ility | Let e1en be partitions of Ω (a collection of ALL the sets in Ω which are independent of each other). Also assuming P[ei] > 0 for all i. The probability of A can be written as: P[A] = sum(i=1,n)(P[A ei]*P[ei]) In english, it's the sum of all the possible scenarios in which A can occur | By **Delegado FM** (Learningbizz) cheatography.com/learningbizz/ Not published yet. Last updated 25th September, 2022. Page 1 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com ### MVE137 - Chalmers University Cheat Sheet by Delegado FM (Learningbizz) via cheatography.com/73767/cs/34116/ #### **Basic Probability Definitions (cont)** Bayes Assuming e1...en be **partitions** Theorem of Ω $$\begin{split} & P[ej|B] = P[Ej \cap B]/P[B] = \\ & (P[B|Ej]/P[Ej])/(sum(i=1,n)(P[-1])/(sum(i=1,n)) \end{split}$$ B/ei]P[ei]) It's basically using conditional theory and then applying conditional theory again for the top part and law of total probability in the lower part ## Discrete Random Variables and Expectation Random A random variable X on a $\mbox{Variable} \quad \mbox{sample space } \Omega \mbox{ is a real-valued} \\ \mbox{(measurable) function on } \Omega; \mbox{ that}$ is $X : \Omega \to R$. Denoted as upper case in this course and real numbers as lower case Discrete A discrete random variable is a random variable that outputs Variable only a finite or countably infinite number of values (i.e. number of kids in a family, Probability that Sum of all the events w in Ω range between 1 and x) which X(w) = x X=a # Discrete Random Variables and Expectation (cont) Indeperation Two random variables X and Y ndence are independent if and only if: of $P[(X = x) \cap (Y = y)] = P[X = x]$ - random *P[Y=y] variables for all values x and y Mutually Like mutually independent indepe- events ndent random variables Expect- It is a weighted average of the ation values assumed by the random (mean) variable, taking into account the probability of getting that value. The expectation of a discrete random variable X, denoted by E[X] is given by $\mathsf{E}[\mathsf{X}] = \mathsf{sum}(\mathsf{i} \texttt{=} \mathsf{x}, \mathsf{X})(\mathsf{x}^*\mathsf{P}[\mathsf{X} \texttt{=} \mathsf{x}])$ By **Delegado FM** (Learningbizz) cheatography.com/learningbizz/ Not published yet. Last updated 25th September, 2022. Page 2 of 2. Sponsored by **CrosswordCheats.com** Learn to solve cryptic crosswords! http://crosswordcheats.com