Cheatography

MVE137 - Chalmers University Cheat Sheet by Delegado FM (Learningbizz) via cheatography.com/73767/cs/34116/

Basic Probability Definitions					
Sample	Set of all possible outcomes				
Space (Ω)	of a random experiment.				
Event	Outcome of a random experiment (inside Ω)				
σ-field	The allowable events constitute a family of sets F, usually referred to as σ -field. Each set in F is a subset of the sample space Ω .				
Probability measure (P)	A probability measure on (Ω, F) is a function P : F \rightarrow [0, 1] that satisfies the following two properties: 1. P[Ω] = 1 2. The probability of the union of a collection of disjoint members is the sum of its probabilities				
Probability space	(Ω, F, P)				
Basic properties of probab- ility measures	$P[\varnothing] = 0$ $P[A^{-}] = 1 - P[A]$ If $A \subset B$, then $P[B] = P[A] +$ $P[B \setminus A] \ge P[A]$ $P[A \cup B] = P[A] + P[B] - P[A$ $\cap B]$				
Inclusion Exclusion Principle (comes from last basic property of probability measures)	Given sets A1, A2 $P[union(Ai)] \le sum(P[Ai])$ When the two events are disjoint, the inequality is = as they don't share any common space: $P[A \cap B] = 0$				

Basic Probability Definitions (cont) Sampling Choose repeatedly a random strategy number in Ω Sampling Select random numbers in Ω , with without taking into account replacwhich ones you've already tested. Therefore, there will be ement some numbers tested multiple times Sampling Select random numbers in Ω taking into account which ones without replacyou've already used. Therefore, ement you won't run the algorithm with the same number more than once Two events are independent if: Independent $P[A \cap B] = P[A] P[B]$ It also applies to families {Ai, i∈ (events or family) I} To form all possible pairs (two Pairwise items at a time) from a set Pairwise A family or events are pairwise indepeindependent if: ndent $P[Ai \cap Aj] = P[Ai] P[Aj]$ for all i (family or != j events) In english terms, a family or events is pairwise independent if any of its possible pairs is independent of each other. For example: P(A∩B)=P(A)P(B) $P(A\cap C)=P(A)P(C)$ $P(B\cap C)=P(B)P(C)$

Basic Probability Definitions (cont)

Mutually indepe- ndent (events)	More than two events (i.e. A,B,C) are mutually independent if: 1. They are pairwise indepe- ndent 2. They meet the condition: $P(A \cap B \cap C) = P(A) \times P(B) \times$ P(C) In plain english, events are mutually independent if any event is independent to the other events
Condit- ional Probab- ility	If $P[B] > 0$, the conditional probability that A occurs give that B occurs is: $P[A B]=P[-A\cap B]/P[B]$
Condit- ional Probab- ility (indep- endent events)	If A and B are independent events, then: P[A B] = P[A∩ B]/P[B] = (P[A]*P[B])/P[B] = P[A]
Law of Total Probab- ility	Let e1en be partitions of Ω (a collection of ALL the sets in Ω which are independent of each other). Also assuming P[ei] > 0 for all i. The probability of A can be written as: P[A] = sum(i=1,n)(P[A ei]*P[ei]) In english, it's the sum of all the possible scenarios in which A can occur

C

By **Delegado FM** (Learningbizz) Not published yet. Last updated 25th September, 2022. Page 1 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/learningbizz/

Cheatography

MVE137 - Chalmers University Cheat Sheet by Delegado FM (Learningbizz) via cheatography.com/73767/cs/34116/

ariables and Expect-

Basic Probability Definitions (cont)			Discrete R	Discrete Random Va	
Bayes	Bayes Assuming e1en be partitions		ation (cont)		
Theorem	of Ω : P[ej B] = P[Ej \cap B]/P[B] = (P[B Ej] <i>P[Ej])/(sum(i=1,n)(P[-B ei]</i> P[ei]) It's basically using conditional	_	Indepe- ndence of random variables	Two ran are inde P[(X = x *P[Y=y] for all va	
	theory and then applying condit- ional theory again for the top part and law of total probability in the lower part		Mutually indepe- ndent random variables	Like mut events	
Discrete R ation	andom Variables and Expect-		Expect- ation	It is a we values a	
Random Variable	A random variable X on a sample space Ω is a real-valued (measurable) function on Ω ; that is X : $\Omega \rightarrow R$. Denoted as upper case in this course and real numbers as lower case		(mean)	variable probabil The exp random E[X] is g E[X] = s	
Discrete Random Variable	A discrete random variable is a random variable that outputs only a finite or countably infinite number of values (i.e. number of kids in a family, range between 1 and x)				
Probab- ility that X=a	Sum of all the events $w \text{ in } \Omega$ which X(w) = x				

Indepe-
ndenceTwo random variables X and Y
are independent if and only if:
 $P[(X = x) \cap (Y = y)] = P[X=x]$ -
*P[Y=y]
for all values x and yMutually
indepe-
ndent
random
variablesLike mutually independent
eventsExpect-
ationIt is a weighted average of the
values assumed by the random
variable, taking into account the
probability of getting that value.
The expectation of a discrete
random variable X, denoted by
E[X] = sum(i=x,X)(x*P[X = x])

C

By **Delegado FM** (Learningbizz)

(Learningbizz)

cheatography.com/learningbizz/

Not published yet. Last updated 25th September, 2022. Page 2 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com