Basic Probability Definitions	
Sample Space (Ω)	Set of all possible outcomes of a random experiment.
Event	Outcome of a random experiment (inside Ω)
σ-field	The allowable events constitute a family of sets F, usually referred to as σ-field. Each set in F is a subset of the sample space Ω.
Probability measure (P)	A probability measure on $(\Omega$, $F)$ is a function $P: F \rightarrow[0,1]$ that satisfies the following two properties: 1. $P[\Omega]=1$ 2. The probability of the union of a collection of disjoint members is the sum of its probabilities
Probability space	(Ω, F, P)
Basic properties of probab- ility measures	$\begin{aligned} & P[\varnothing]=0 \\ & P\left[A^{-}\right]=1-P[A] \\ & \text { If } A \subset B \text {, then } P[B]=P[A]+ \\ & P[B \backslash A] \geq P[A] \\ & P[A \cup B]=P[A]+P[B]-P[A \\ & \cap B] \end{aligned}$
Inclusion Exclusion Principle (comes from last basic property of probability measures)	Given sets A1, A2... P[union(Ai)] $\leq \operatorname{sum}(P[A i])$ When the two events are disjoint, the inequality is = as they don't share any common space: $P[A \cap B]=0$

By Delegado FM
(Learningbizz)

Basic Probability Definitions (cont)	
Sampling strategy	Choose repeatedly a random number in Ω
Sampling with replac- ement	Select random numbers in Ω, without taking into account which ones you've already tested. Therefore, there will be some numbers tested multiple times
Sampling without replacement	Select random numbers in Ω taking into account which ones you've already used. Therefore, you won't run the algorithm with the same number more than once
Indepe- ndent (events or family)	Two events are independent if: $P[A \cap B]=P[A] P[B]$ It also applies to families $\{\mathrm{Ai}, \mathrm{i} \in$ I\}
Pairwise	To form all possible pairs (two items at a time) from a set
Pairwise indepe- ndent (family or events)	A family or events are pairwise independent if: $P[A i \cap A j]=P[A i] P[A j]$ for all i ! $=$ j In english terms, a family or events is pairwise independent if any of its possible pairs is independent of each other. For example: $\begin{aligned} & P(A \cap B)=P(A) P(B) \\ & P(A \cap C)=P(A) P(C) \\ & P(B \cap C)=P(B) P(C) \end{aligned}$

Basic Probability Definitions (cont)
Mutually More than two events (i.e. indepe- $A, B, C)$ are mutually independent ndent if:
(events) 1. They are pairwise independent
2. They meet the condition: $P(A \cap B \cap C)=P(A) \times P(B) \times$ $P(C)$
In plain english, events are mutually independent if any event is independent to the other events

Condit- If $\mathrm{P}[\mathrm{B}]>0$, the conditional ional probability that A occurs give Probab- that B occurs is: $P[A \mid B]=P[-$ ility $\quad A \cap B] / P[B]$
Condit- If A and B are independent ional events, then:
Probab- $\quad P[A \mid B]=P[A \cap B] / P[B]=$
ility $\quad\left(P[A]^{*} P[B]\right) / P[B]=P[A]$
(indep-
endent
events)
Law of Let e1...en be partitions of Ω
Total
Probab-
ility (a collection of ALL the sets in Ω which are independent of each other). Also assuming $\mathrm{P}[\mathrm{ei}]>0$ for all i. The probability of A can be written as:
$P[A]=\operatorname{sum}(i=1, n)\left(P[A \mid e i]^{*} P[e i]\right)$ In english, it's the sum of all the possible scenarios in which A can occur

Not published yet.
Last updated 25th September, 2022.
Page 1 of 2.

Sponsored by Readable.com
Measure your website readability! https://readable.com
cheatography.com/learningbizz/

MVE137 - Chalmers University Cheat Sheet

by Delegado FM (Learningbizz) via cheatography.com/73767/cs/34116/

Basic Probability Definitions (cont)
Bayes
Assuming e1...en be partitions
Theorem of Ω :
$P[e j \mid B]=P[E j \cap B] / P[B]=$ $(\mathrm{P}[\mathrm{B} \mid \mathrm{Ej}] P[E j]) /(\operatorname{sum}(i=1, n)(P[-$ B/eiP[ei])
It's basically using conditional theory and then applying conditional theory again for the top part and law of total probability in the lower part

Discrete Random Variables and Expect-
 ation

Random A random variable X on a
Variable sample space Ω is a real-valued (measurable) function on Ω; that is $X: \Omega \rightarrow R$.
Denoted as upper case in this course and real numbers as lower case

Discrete A discrete random variable is a Random random variable that outputs Variable only a finite or countably infinite number of values (i.e. number of kids in a family, range between 1 and x)

Probab- \quad Sum of all the events w in Ω
ility that which $\mathrm{X}(\mathrm{w})=\mathrm{x}$
$X=a$

By Delegado FM
(Learningbizz)

Discrete Random Variables and Expect-
ation (cont)
Indepe- Two random variables X and Y
ndence are independent if and only if:
of $\quad P[(X=x) \cap(Y=y)]=P[X=x]$ -
random *P[Y=y]
variables for all values x and y
Mutually Like mutually independent
indepe- events
ndent
random
variables
Expect- It is a weighted average of the
ation values assumed by the random
(mean) variable, taking into account the probability of getting that value.
The expectation of a discrete random variable X , denoted by $E[X]$ is given by $E[X]=\operatorname{sum}(i=x, X)\left(x^{*} P[X=x]\right)$

Not published yet.
Last updated 25th September, 2022.
Page 2 of 2.

Sponsored by Readable.com
Measure your website readability! https://readable.com

