
Algo Cheat Sheet
by lavas via cheatography.com/27670/cs/8074/

BFS

Takes a root node and sets the distance to 0
and puts it in a queue(​FIFO), while every other
node is set to infinity. Iterat ​ively explores the
neighbors of the dequeued node and adds
them to queue and updates their distance.
O(V+E)

DFS

Initialize each node as unvisited and no time of
arrival or departure. From an establ ​ished root
node recurs ​ively visit a vertex of the node,
noting the time of arrival and finish. Set the
node as visited when setting the finishing time.
O(V+E)

Decomp ​osing a directed graph into its strongly
connected components
Determ ​ining articu ​lation points, bridges &
biconn ​ected components of an undirected
graph

DFS Parent ​hesis Theorem

In any DFS of a graph G = (V, E), for any two
vertices u and v, exactly one of the followings
holds:
1. The interval [d[u], f[u]] and [d[v], f[v]] are
entirely disjoint
2. The interval [d[u], f[u]] is contained entirely
within the interval [d[v], f[v]], and u is a
descendant of v in the depth- ​first tree
3. The interval [d[v], f[v]] is contained entirely
within the interval [d[u], f[u]], and v is a
descendant of u in the depth- ​first tree

Classi ​fic ​ation of Edges

DFS can be used to classify edges of G:
1. Tree edges: edges in the depth- ​first forest G .
Edge (u, v) is a tree edge if v was first
discovered by exploring edge (u, v).
2. Back edges: edges (u, v) connecting a
vertex u to an ancestor v in a depth- ​first tree.
Self-loops are considered to be back edges.

Classi ​fic ​ation of Edges (cont)

3. Forward edges: nontree edges (u, v)
connecting a vertex u to a descendant v in a
depth- ​first tree.
4. Cross edges: all other edges.
Modify DFS so that each edge (u, v) can be
classified by the color of the vertex v that is
reachable when the edge is first explored:
1. WHITE indicates a tree edge
2. GRAY indicates a back edge
3. BLACK indicates a forward or cross edges

Topolo ​gical Sort

1. Call DFS(G) to compute finishing time f[v] for
each vertex
2. As each vertex is finished, insert it onto the
front of linked list
3. Return the linked list of vertices
O(V+E)

Greedy

Greedy algorithms are typically used to solve
optimi ​zation problems & normally consist of
Set of candidates
Set of candidates that have already been used
Function that checks whether a particular set
of candidates provides a solution to the
problem
Function that checks if a set of candidates is
feasible
Selection function indicating at any time which
is the most promising candidate not yet used
Objective function giving the value of a solution;
this is the function we are trying to optimize

Kruskal's MST Algorithm

A <- 0 // initially A is empty

for each vertex v � V[G] // line

2-3 takes O(V) time

 ​ ​ ​ ​ do Create ​-Set(v) // create
set for each vertex

sort the edges of E by

nondec ​reasing weight w
for edge E, in order by

nondec ​reasing weight
 ​ ​ ​ ​ do if Find-S ​et(u) != Find-
S ​et(v) // u&v on different trees
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ then A <- A U {(u,v)}
 ​Uni ​on(u,v
)

 ​return A
Create ​-Se ​t(u): create a set
containing u.

Find-S ​et(u): Find the set that
contains u.

Union(u, v): Merge the sets

containing u and v.

O(E*lo ​g(E))

Dynamic Progra ​mming

Similar to divide ​-an ​d-c ​onquer, it breaks
problems down into smaller problems that are
solved recurs ​ively.
In contrast, DP is applicable when the sub-
pr ​oblems are not indepe ​ndent, i.e. when sub-
pr ​oblems share sub-su ​b-p ​rob ​lems. It solves
every sub-su ​b-p ​roblem just once and save the
results in a table to avoid duplicated
comput ​ation.

Applic ​ability to Optimi ​zation Problems

Optimal sub-st ​ructure (principle of optima ​lity):
for the global problem to be solved optimally,
each sub-pr ​oblem should be solved optimally.
This is often violated due to sub-pr ​oblem
overlaps. Often by being “less optimal” on one
problem, we may make a big savings on
another sub-pr ​oblem.

By lavas
cheatography.com/lavas/

Published 3rd May, 2016.
Last updated 3rd May, 2016.
Page 1 of 2.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/lavas/
http://www.cheatography.com/lavas/cheat-sheets/algo
http://www.cheatography.com/lavas/
https://readability-score.com

Algo Cheat Sheet
by lavas via cheatography.com/27670/cs/8074/

Applic ​ability to Optimi ​zation Problems
(cont)

Small number of sub-pr ​oblems: Many NP-hard
problems can be formulated as DP problems,
but these formul ​ations are not efficient,
because the number of sub-pr ​oblems is
expone ​ntially large. Ideally, the number of sub-
pr ​oblems should be at most a polynomial
number

LP Overview

Decision variables - mathem ​atical symbols
repres ​enting levels of activity of a firm.
Objective function - a linear mathem ​atical
relati ​onship describing an objective of the firm,
in terms of decision variables - this function is to
be maximized or minimized.
Constr ​aints – requir ​ements or restri ​ctions
placed on the firm by the operating
enviro ​nment, stated in linear relati ​onships of the
decision variables.
Parameters - numerical coeffi ​cients and
constants used in the objective function and
constr ​aints.

Selection

Divide the n elements of input array into �n/5�
groups of 5 elements each and at most one
group made up of the remaining (n mod 5)
elements.
Find the median of each group by insertion sort
& take its middle element (smaller of 2 if even
number input).
Use Select recurs ​ively to find the median x of
the �n/5� medians found in step 2.
Partition the input array around the median ​-of ​-
me ​dians x using a modified Partition. Let k be
the number of elements on the low side and n-k
on the high side.
Use Select recurs ​ively to find the ith smallest
element on the low side if i � k , or the (i-k)th
smallest element on the high side if i > k

P

P is a complexity class that represents the set
of all decision problems that can be solved in
polynomial time. That is, given an instance of
the problem, the answer yes or no can be
decided in polynomial time.
Given a graph connected G, can its vertices be
coloured using two colours so that no edge is
monoch ​rom ​atic?
Algorithm: start with an arbitrary vertex, color it
red and all of its neighbours blue and continue.
Stop when you run out of vertices or you are
forced to make an edge have both of its
endpoints be the same color.

NP

NP is a complexity class that represents the set
of all decision problems for which the instances
where the answer is " ​yes ​" have proofs that can
be verified in polynomial time.
This means that if someone gives us an
instance of the problem and a certif ​icate to the
answer being yes, we can check that it is
correct in polynomial time.

NP Complete

NP-Com ​plete is a complexity class which
represents the set of all problems X in NP for
which it is possible to reduce any other NP
problem Y to X in polynomial time.
Intuit ​ively this means that we can solve Y
quickly if we know how to solve X quickly.
Precisely, Y is reducible to X, if there is a
polynomial time algorithm f to transform
instances y of Y to instances x = f(y) of X in
polynomial time, with the property that the
answer to y is yes, if and only if the answer to
f(y) is yes.

NP Complete (cont)

It can be shown that every NP problem can be
reduced to 3-SAT. The proof of this is technical
and requires use of the technical definition of
NP (based on non-de ​ter ​min ​istic Turing
machines). This is known as Cook's theorem.
What makes NP-com ​plete problems important
is that if a determ ​inistic polynomial time
algorithm can be found to solve one of them,
every NP problem is solvable in polynomial
time.

NP-Hard

Intuit ​ively, these are the problems that are at
least as hard as the NP-com ​plete problems.
Note that NP-hard problems do not have to be
in NP, and they do not have to be decision
problems.
The precise definition here is that a problem X
is NP-hard, if there is an NP-com ​plete problem
Y, such that Y is reducible to X in polynomial
time.
But since any NP-com ​plete problem can be
reduced to any other NP-com ​plete problem in
polynomial time, all NP-com ​plete problems can
be reduced to any NP-hard problem in
polynomial time. Then, if there is a solution to
one NP-hard problem in polynomial time, there
is a solution to all NP problems in polynomial
time.
The halting problem is an NP-hard problem.
This is the problem that given a program P and
input I, will it halt? This is a decision problem
but it is not in NP. It is clear that any NP-
com ​plete problem can be reduced to this one.
As another example, any NP-com ​plete problem
is NP-hard.

By lavas
cheatography.com/lavas/

Published 3rd May, 2016.
Last updated 3rd May, 2016.
Page 2 of 2.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/lavas/
http://www.cheatography.com/lavas/cheat-sheets/algo
http://www.cheatography.com/lavas/
https://readability-score.com

	Algo Cheat Sheet - Page 1
	BFS
	Kruskal's MST Algorithm
	DFS
	Topolo­gical Sort
	Greedy
	DFS Parent­hesis Theorem
	Dynamic Progra­mming
	Classi­fic­ation of Edges
	Applic­ability to Optimi­zation Problems

	Algo Cheat Sheet - Page 2
	P
	LP Overview
	NP-Hard
	NP
	Selection
	NP Complete

