

Biology Cheat Sheet

envelope

by Lady's Notenook (Lady_Notenook) via cheatography.com/203562/cs/43362/

Nucleus

- Information Central
- · It houses most of the cell's DNA
- It contains most of the genes in the eukaryotic cell
- Most conspicuous (noticeable) structure in eukaryotic cells (5 μ m)

Nucleolus (Nucleoli)

Non-membranous structure involved in production of ribosomes

Nucleus has one or more nucleoli

Nuclear envelope

Encloses the nucleus

Separates its contents from the cytoplasm

Double membrane

Perforated by pores

Pore complex lines regulates entry and exit of proteins,

RNAs, and large complexes of macromolecules

Continuous with ER

Chromatin

Consist of DNA and proteins

Makes up chromosomes

Visible in a dividing cell as individual condensed chromosomes

Endomembrane system

Includes: nuclear envelope, ER, Golgi apparatus, lysosomes, various kinds of vesicles and vacuoles, plasma membrane

ENDOPLASMIC RETICULUM (ER)

Biosynthetic endoplasmic - within Factory the cytoplasm

It is continuous reticulum - little net with the nuclear

Rough ER

Ribosomes on
the outer surface

Synthesis of
lipids,
metabolism of
carbohydrates

Smooth ER

Lacks ribosomes on
outer surface

Synthesis of secretory
and other proteins on
bound ribosomes

Ca²+ storage adds carbohydrates to proteins to make glycoproteins

<3

Detoxification of drugs and poisons

Golgi apparatus

Shipping and Receiving Center

Active in synthesis, Warehouse for modification, receiving, sorting, sorting, and shipping, and even secretion of cell products

Warehouse for receiving, sorting, sorting, some manufacturing products

Cis face Trans face

receiving face, in through which the which the vesicles vesicles leave the empty their content Golgi apparatus

Lvsosome

Digestive organelle where macromolecules are hydrolyzed

hydrolytic enzymes that an animal cell uses to digest (hydrolyze) macromolecules.

Peroxisome

Oxidation

Contain enzymes that remove hydrogen atoms from various substrates and transfer them to oxygen

Produces hydrogen peroxide as a by-product, then converts it to water

Ribosomes

Made of

synthesis

Protein Factories

ribosomal RNA (Cytosol)
and protein
Carry out protein
Bound ribosomes (ER

Free ribosomes

and Nuclear Envelope)

Not membrane bounded and thus are not considered organelles

Ribosomes in the cytoplasm translate the genetic message, carried from the DNA in the nucleus by mRNA, into a polypeptide chain.

Centrosome

Contains a pair of centrioles

Where the cell's microtubules are initiated

Chromosome

A structure within the nucleus containing one long DNA molecule

C

By Lady's Notenook (Lady_Notenook) cheatography.com/ladynotenook/ Not published yet. Last updated 13th May, 2024. Page 1 of 7.

Biology Cheat Sheet

by Lady's Notenook (Lady_Notenook) via cheatography.com/203562/cs/43362/

Mitochondrion

Chemical common to plant and animal Energy cells

Conversion

Organelle Cellular respiration - uses
where oxygen to generate ATP by
cellular extracting energy from
respiration sugars, fats, and other fuels
occurs

Nuclear Lamina

Maintains the shape of the nucleus

Supports nuclear envelope

Plasma membrane

Membrane enclosing the cell

Microvill

Projections that increase the cell's surface area

Cytoskeleton

Reinforces cell's shape

Functions in cell movement

Components are made of protein

It is a network of fibers that organizes structures and activities in the cell

Includes: Microfilaments, Intermediate filaments, Microtubules

Microfilaments

Thin rods functioning in muscle contraction

Intermediate filaments

Support cell shape and fix organelles in place

In animal cells but not plant cells

Lysosomes

Centrosomes w/ centrioles

Flagella (present in some plant sperm)

Eukaryotic Cell (Animal Cell)

In plant cells but not animal cells

Chloroplasts

Central vacuole

Cell wall

Plasmodesmata

Not published yet. Last updated 13th May, 2024. Page 2 of 7.

Plant Cell

Chloroplast

site of photosynthesis

Converts energy of sunlight to like poker chips chemical energy

Capture of Light granum - each stack Energy of thylakoids

Contains chlorophyll stroma - contains the chloroplast DNA and

ribosomes

Central vacuole

Include storage, breakdown of waste products, hydrolysis of macromolecules

Enlargement of vacuole is a major mechanism of plant growth

By Lady's Notenook (Lady_Notenook) cheatography.com/ladynotenook/

Cell wall

Outer layer that maintains cell's shape and protects cell from mechanical damage; made of cellulose, other polysaccharides, and protein

Plasmodesmata

Cytoplasmic channels through cell walls that connect the cytoplasms of adjacent cells

Chromosomes

chroma - color soma - body

Where DNA molecules are packaged into

Each eukaryotic chromosome: One long, linear DNA molecule associated with many proteins

Made of protein and a single molecule of deoxyribonucleic acid (DNA)

Human somatic cells have 46 chromosomes, two sets of 23 inherited from each parent Maternal set (from your mother) Paternal set (from your father)

Gametes (sperm and eggs): Have half as many chromosomes as somatic cells, one set of 23 in humans

Sex Chromosomes

Determine individual's sex (X and Y chromosomes in humans)

Females have a homologous pair of X chromosomes (XX)

Males have one X and one Y chromosome (XY).

Autosomes Chromosomes

Carry genetic information unrelated to sex determination

The other 22 pairs of chromosomes

Number of chromosomes

n number of chromosomes in a single set

Diploid cell Two sets of chromosomes; diploid number of chromosomes (2n)

Haploid cell Single chromosome set; haploid number of

Humans: Humans: diploid number haploid is 46 (2n = 46)

chromosomes (n)

number is 23 (n = 23)

Chromosome

Chromosomes are composed of DNA, while specific segments of DNA are genes

Condensation of chromosomes

When the cell is Each chromosome exists as a long, thin chromatin fiber

DNA replication Chromosomes condense, becoming ation for cell division Each chromosome exists as a long, thin chromatin fiber

Chromosomes condense, becoming densely coiled and folded

Not published yet. Last updated 13th May, 2024. Page 3 of 7.

Condensation of chromosomes (cont)

Makes them shorter and thicker, visible under a light microscope

Genome

The complete set of DNA

A cell's endowment of DNA, its genetic information

Prokaryotic Single DNA molecule genome

Eukaryotic Multiple DNA genomes molecules

Prokaryotes

Single-celled organisms lacking a nucleus and other membrane-bound organelles

Eukaryotes

Organisms with cells that contain a nucleus and other membrane-bound organelles

Gametes

Reproductive cells (eggs or sperm) containing half the chromosome number of somatic cells

Gametes

Reproductive cells in plants and animals that carry genes to the next generation

By Lady's Notenook (Lady_Notenook) cheatography.com/ladynotenook/

Rudolf Virchow

German physician 1855

"Where a cell exists, there must have been a preexisting cell, just as the animal arises only from an animal and the plant only from a plant."

Latin axiom "Omnis cellula e cellula,"

meaning "Every cell from a cell."

Cell Division

The process by which a parent cell divides into two or more genetically identical daughter cells

Involves distribution of DNA to ensure each daughter cell receives a complete set of genetic material

Roles of Cell Division

Reproduction

Growth and development

Renewal and repair

Daughter cells

The cells resulting from cell division, each containing a complete set of genetic information inherited from the parent cell

Chromosome Structure

Sister chromatids

Joined copies of the original chromosome

Each duplicated chromosome has two sister chromatids

Attachment known as sister chromatid cohesion

Arms of chromatic

The portions of a chromatid on either side of the centromere

Centromere

A region of DNA sequences where sister chromatids are closely attached.

Cell Cycle

Mitotic (M) phase

Shortest phase

Includes mitosis and cytokinesis

Mitosis

The division of genetic material in the nucleus of a cell

The nucleus divides into two daughter nuclei, each with the same number of chromosomes as the parent nucleus

Mitosis

five stages of mitosis (Animal)

five stages of mitosis (Animal)		
Prophase	Chromatin fibers - become more tightly coiled	
	Nucleoli - disappear	
	Each duplicated chromosome appears as two identical sister chromatids	
	Mitotic spindle - Begins to form	
	Centrosomes move away from each other	
Promet- aphase	Nuclear envelope - fragments (Breaks)	
	Chromosomes - more condensed	
	Microtubules - invade the nuclear area	
	Kinetochore on microtubules	
Metaphase	Centrosomes - opposite poles of the cell	
	Chromosomes convene at the metaphase plate	
Anaphase	Shortest stage of mitosis	
Telophase	Nucleoli - reappear	
	Nuclear envelopes- arise	
	chromosomes - less	

Cytokinesis

The division of the cytoplasm, resulting in the formation of two daughter cells

condensed

involves the formation of a cleavage furrow, which pinches the cell in two

By Lady's Notenook (Lady_Notenook) cheatography.com/ladynotenook/

Not published yet. Last updated 13th May, 2024. Page 4 of 7.

Interphase

Longer Phase (90% of the cycle)

Cell growth, DNA replication, and preparation for cell division

three stages: G1 phase, S phase, G2 phase

Interpha	0.0	
	-1-	

G1	cell growth and production of
phase	proteins and organelles
S	where DNA synthesis occurs,
phase	resulting in the duplication of
	chromosomes
G2	cell continues to grow and
phase	prepares for cell division

A type of cell division that reduces the chromosome number by half, occurring in reproductive cells to produce gametes

From diploid to haploid

Ttwo consecutive cell meiosis I and divisions: meiosis II

Separates r	iomologous chromosomes
Prophase	Synapsis and crossing over
I	
	synapsis - Replicated

homologs pair up and become physically connected along their length, by synaptonemal complex,

Crossing over - genetic rearrangement between nonsister chromatids

After synapsis, two homologs pull apart slightly but remain connected by at least one Xshaped region called a chiasma (plural, chiasmata)

metaphase

Alignment of homologs on the metaphase plate

pairs of homologous chromosomes line up on the metaphase plate

anaphase I Separation of homologs

> replicated chromosomes of each homologous pair move toward opposite poles, while the sister chromatids of each replicated chromosome remain attached

sister chromatids separate

anaphase I - cohesins are cleaved along the arms, allowing homologs to separate

anaphase II - cohesins are cleaved at the centromeres, allowing chromatids to separate.

Metaphase Chromosomes align at the metaphase plate, similar to mitosis; Due to crossing over in meiosis I, sister chromatids are not genetically identical. -Kinetochores of sister chromatids attach to microtubules from opposite poles.

Anaphase Ш

Ш

Proteins holding sister chromatids together at the centromere break down. -Chromatids separate and move toward opposite poles as individual chromosomes.

Telophase II and Cytokinesis

Nuclei form, chromosomes start decondensing, and cytokinesis happens. - One parent cell's meiotic division yields four daughter cells, each with a haploid set of unduplicated chromosomes. -The four daughter cells are genetically distinct from each other and from the parent cell.

Mitosis II

Note:

Spindle apparatus forms; **Prophase** Ш Chromosomes, each still with two chromatids, move toward the metaphase II plate via microtubules

By Lady's Notenook (Lady_Notenook) cheatography.com/ladynotenook/

Not published yet. Last updated 13th May, 2024. Page 5 of 7.

mitosis ve maiosis

Meiosis

Halves the total number of chromosomes, reducing the number of sets of chromosomes from two (diploid) to one (haploid), with each daughter cell receiving one set

Mitosis

Conserves the number of chromosome sets

Produces cells that differ genetically from the parent cell and from each other Produces daughter cells that are genetically identical to the parent cell and to each other

Binary fission

A type of asexual reproduction in prokaryotes where a cell grows and then divides into two daughter cells

Genetics

It is the scientific study of heredity and hereditary variation

Genes

Coded information passed from parents to offspring in the form of DNA

Genome

Complete set of genes inherited from both parents

Heredit

It is the transmission of traits from one generation to the next

Gregor Mendel

He deduced the fundamental principles of genetics by breeding garden peas

hybridization or a genetic cross

Offspring from different varieties are hybrids

P generation

initial parent plants

F1 generation

Hybrid offspring

F stands for "filial," which means "son" in Latin

Locus (plural, loci)

refers to a specific spot on a chromosome where a gene is located

Genetics

- Genes have different forms called alleles.
- Alleles and genes can be used interchangeably.
- A gene pair refers to a set of alleles for the same gene.
- Each allele determines a specific characteristic or trait.
- Genotype refers to the combination of alleles (genetic makeup).

Genetics (cont)

- Phenotype refers to observable traits, like behavior or physical appearance, resulting from the genotype.
- Homozygote for a particular allele means having two identical alleles (e.g., PP or pp).
- Heterozygote means having two different alleles for the same gene (e.g., Pp).

Mendelian and Non-Mendelian

Mendelian:

- 1. Incomplete Dominance:
- Results in intermediate phenotypes.
- Example: In flowers, RR is red, rr is white, and Rr is pink.
- 2. Law of Independent Segregation:
- Alleles of a gene pair separate during meiosis.
- Example: In seed shape, Rr alleles segregate independently.
- 3. Law of Independent Assortment:
- Alleles of different gene pairs segregate independently during meiosis.
- Example: Alleles for seed color and seed shape assort independently.

Non-Mendelian:

- 4. Multiple Alleles:
- Many genes have more than two alleles.
- Example: ABO blood groups in humans with three alleles (IA, IB, i).
- 5. Codominance:
- Both alleles in a heterozygote are fully expressed.

Not published yet. Last updated 13th May, 2024. Page 6 of 7.

Mendelian and Non-Mendelian (cont)

- Example: ABO blood type where IA and IB are codominant.

6. Pleiotropy:

- One gene influences multiple traits.
- Example: A gene affecting coat color also influences eye color.

7. Polygenic Inheritance:

- Many genes contribute to one phenotype.
- Example: Skin color influenced by multiple genes.

8. Epistasis:

- One gene's expression depends on another gene's presence.
- Example: The expression of one gene (like fur color) depends on the presence of another gene (like pigment production).

By Lady's Notenook (Lady_Notenook) cheatography.com/ladynotenook/ Not published yet. Last updated 13th May, 2024. Page 7 of 7.