Cheatography

Chemical Bonding

Physical Properties							
Melting/ bo point	iling str	ength of bonding	amount of energy required to overcome bond		id-id< pd-pd< H-bond< (metallic/ ionic/ covalent)		
Solubility	fav	ourable bonds formed?	bonds formed stronger than bonds broken				
	Wa	ter + polar => ion-dipole	polar + polar		non-polar + non-polar		
Electrical conduc- tivity		esence of electrical riers	mobile delocalised e ⁻ or ions				
Covalent C	compounds			Molecular Shape and	Arrangement		
covalent bonds	EFoA betwee nuclei	n shared pair of e⁻ and po	sitively charged				
	dative covalent	one atom contributes b	oth bonding e				
overlap or orbitals	sigma (σ) bond	head-on overlap	s- and p- orbital				
	pi (π) bond	side-on overlap	p-orbitals only				
Strength = bond energy	no of bonding e⁻ (bond order)	effectiveness of orbital overlap	bond polarity (incr ionic character)				
	more bonding e ⁻ = stronger EFoA	larger orbital = more diffused = less effective overlap	more polar = stronger EFoA				
simple covalent structure	simple discre	te molecules					
	id id	non-polar; weak	size of electron cloud; polarisability				
	pd pd	polar; stronger than id id	strength of dipole moment				
	H bond	H bonded to NOF + lone pair of electrons on NOF	optimal ratio of H:e- (1:1)				
giant covalent structure:							
diamond	each C bonded to 4 other C atoms	giant covalent lattice					
graphite	each C bonded to 3 other C atoms	giant extensive planar layers	weak id id between layers				

Valence shell electron repulsion theory	VSEPR					
Conditions	e ⁻ pairs arranged as far apart as possible	minimise repulsion				
	LP-LP >	LP-BP>	BP- BP>	BP- Lone e		
	Repulsion of e ⁻ incr as electroneg incr	electroneg incr = e ⁻ closer to central atom	= stro	nger repulsion		
No of e ⁻ pairs	e⁻ pair geometry	No of BP	No of LP	molecular geometry	Bond angle	
2	linear	2	0	linear	180	
3	trigonal planar	3	0	trigonal planar	120	
		2	1	bent	<120	
4	tetrah- edral	4	0	tetrah- edral	109	
		3	1	trigonal pyramidal	107	
		2	2	bent	105	
5	trigonal bipyra- midal	5	0	trigonal bipyra- midal	equatorial - 120; axial - 180	
		4	1	see-saw (remove from equatorial plane)	equatorial - <120; axial - 180	
		3	2	T-shaped	90	
		2	3	linear	180	
6	octahedral	6	0	octahedral	90	
		5	1	square pyramidal	90	

C

By L_Wen

cheatography.com/l-wen/

Not published yet. Last updated 22nd September, 2023. Page 2 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

H2 Chem Chemical Bonding Cheat Sheet by L_Wen via cheatography.com/193987/cs/40409/

Molecular Shape and Arrangement (cont)							
4	2	square planar			90		
Electronega	ativity						
tendency of electrons to	f an atom owards its	to pull elf	nuclear charge		stronger = greater pull		
		distance of e⁻ from nucleus		further = weaker pull			
trend	rend		down group		decrease		
			across period		increase		
Ionic compounds							
lonic bond	IMFOA between oppositely charge ions						
structure	giant ionic lattice structure						
strength	lattice er	energy		(product of charges)/(su of ionic radius)			
coordi- nation number	number ions sur ion	of opp-charge rounding centr	pp-charged		increase, n number		
IONIC vs COVALENT CHARACTER							
Pure covalent	Approx equal electron	no dist	ortion	of electron cl	loud		

dipole moment (δ^+ ,

stronger polarising

power of cation

(charge density)

larger e⁻ cloud =

incr polarisability

δ⁻)

incr electroneg diff

increase covalent

increase covalent

= incr dipole

= increase

distortion =

character

= increase

distortion =

character

e cloud remains intact and spherical

Metallic compounds							
Metallic bond	Metallic EFoA between metallic cations and sea of deloca- bond lised, mobile e ⁻						
in giant metallic lattice structure							
Factors affecting strength	Factors Charge affecting density strength		No of e ⁻ delocalised per atom				
Unique physical properties	Unique Malleable physical (beat into properties sheets)		Ductile (drawn into wire)			orderly arrangement of cation	
Alloy formation		ation	non-metal atoms disrupts orderly arrangement			tensile strength increase	
	Reflectivity		Delocalised e ⁻ absorb light and excited		orb	promoted to higher level	
		De-excitation => => light release E			=> light		
Special Case	s						
Anomalous Mr of organic acid in gaseous phase/- benzene solvent		Apparent Mr twice of anomalous Mr		dimeri- sation	eith octe favo forn E)	er achieve et, or due to ourable bonds ned (release	
Different physical properties of structural isomers		1,2-nitro- phenol has lower BP than 1,4-ni- trophenol		1,2-nitro- phenol has intramole- cular H- bond	less inte	less extensive inter-molecular H bond	
Bp of HI> HBr>HCI		incr in id-id down group		decrease dipole moment down group	incr id-id more significant		
Density of water > ice		ice - hexagon arranger of water	al nent	large amour	nt of e	empty spaces	

С

Pure ionic

character

Covalent

with ionic

character

lonic with

covalent

character

atoms with

electroneg

polarisation

distorts

anion e⁻

some form

cloud

of e⁻

sharing

complete

transfer of

e

diff

By L_Wen cheatography.com/l-wen/

Not published yet. Last updated 22nd September, 2023. Page 3 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com