

## H2 Chem Chemical Bonding Cheat Sheet by L\_Wen via cheatography.com/193987/cs/40409/

## **Chemical Bonding**

| Physical Properties     |                                 |                                            |                                                   |
|-------------------------|---------------------------------|--------------------------------------------|---------------------------------------------------|
| Melting/ boiling point  | strength of bonding             | amount of energy required to overcome bond | id-id< pd-pd< H-bond< (metallic/ ionic/ covalent) |
| Solubility              | favourable bonds formed?        | bonds formed stronger than bonds broken    |                                                   |
|                         | water + polar => ion-dipole     | polar + polar                              | non-polar + non-polar                             |
| Electrical conductivity | presence of electrical carriers | mobile delocalised e <sup>-</sup> or ions  |                                                   |

| Covalent Compounds              |                                                                       |                                                               |                                              |  |
|---------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|--|
| covalent bonds                  | ent EFoA between shared pair of e <sup>-</sup> and positively charged |                                                               |                                              |  |
|                                 | dative one atom contributes both bonding e <sup>-</sup> covalent      |                                                               |                                              |  |
| overlap<br>or<br>orbitals       | sigma (σ)<br>bond                                                     | head-on overlap                                               | s- and p-<br>orbital                         |  |
|                                 | pi (π) bond                                                           | side-on overlap                                               | p-orbitals only                              |  |
| Strength<br>= bond<br>energy    | no of bonding<br>e <sup>-</sup> (bond<br>order)                       | effectiveness of orbital overlap                              | bond polarity<br>(incr ionic<br>character)   |  |
|                                 | more bonding e = stronger EFoA                                        | larger orbital = more<br>diffused = less<br>effective overlap | more polar = stronger EFoA                   |  |
| simple<br>covalent<br>structure | simple discrete molecules                                             |                                                               |                                              |  |
|                                 | id id                                                                 | non-polar; weak                                               | size of<br>electron cloud;<br>polarisability |  |
|                                 | pd pd                                                                 | polar; stronger than id id                                    | strength of<br>dipole<br>moment              |  |
|                                 | H bond                                                                | H bonded to NOF +<br>lone pair of electrons<br>on NOF         | optimal ratio of<br>H:e- (1:1)               |  |
| giant coval                     | ent structure:                                                        |                                                               |                                              |  |
| diamond                         | each C<br>bonded to 4<br>other C<br>atoms                             | giant covalent lattice                                        |                                              |  |
| graphite                        | each C<br>bonded to 3<br>other C<br>atoms                             | giant extensive planar<br>layers                              | weak id id<br>between<br>layers              |  |

## Molecular Shape and Arrangement

| Valence<br>shell<br>electron | VSEPR                                                           |                                                                     |                |                                                    |                                        |
|------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|----------------|----------------------------------------------------|----------------------------------------|
| repulsion<br>theory          |                                                                 |                                                                     |                |                                                    |                                        |
| Conditions                   | e pairs<br>arranged<br>as far<br>apart as<br>possible           | minimise rep                                                        | oulsion        |                                                    |                                        |
|                              | LP-LP >                                                         | LP-BP>                                                              | BP-<br>BP>     | BP- Lone e                                         |                                        |
|                              | Repulsion<br>of e <sup>-</sup> incr<br>as<br>electroneg<br>incr | electroneg<br>incr = e <sup>-</sup><br>closer to<br>central<br>atom | = stro         | nger repulsior                                     | 1                                      |
| No of e <sup>-</sup> pairs   | e <sup>-</sup> pair<br>geometry                                 | No of BP                                                            | No<br>of<br>LP | molecular<br>geometry                              | Bond<br>angle                          |
| 2                            | linear                                                          | 2                                                                   | 0              | linear                                             | 180                                    |
| 3                            | trigonal<br>planar                                              | 3                                                                   | 0              | trigonal<br>planar                                 | 120                                    |
|                              |                                                                 | 2                                                                   | 1              | bent                                               | <120                                   |
| 4                            | tetrah-<br>edral                                                | 4                                                                   | 0              | tetrah-<br>edral                                   | 109                                    |
|                              |                                                                 | 3                                                                   | 1              | trigonal<br>pyramidal                              | 107                                    |
|                              |                                                                 | 2                                                                   | 2              | bent                                               | 105                                    |
| 5                            | trigonal<br>bipyra-<br>midal                                    | 5                                                                   | 0              | trigonal<br>bipyra-<br>midal                       | equatoria<br>- 120;<br>axial -<br>180  |
|                              |                                                                 | 4                                                                   | 1              | see-saw<br>(remove<br>from<br>equatorial<br>plane) | equatoria<br>- <120;<br>axial -<br>180 |
|                              |                                                                 | 3                                                                   | 2              | T-shaped                                           | 90                                     |
|                              |                                                                 | 2                                                                   | 3              | linear                                             | 180                                    |
| 6                            | octahedral                                                      | 6                                                                   | 0              | octahedral                                         | 90                                     |
|                              |                                                                 | 5                                                                   | 1              | square<br>pyramidal                                | 90                                     |



Not published yet. Last updated 22nd September, 2023. Page 2 of 3. Sponsored by **Readable.com**Measure your website readability!
https://readable.com



## H2 Chem Chemical Bonding Cheat Sheet

by L\_Wen via cheatography.com/193987/cs/40409/

| Molecu | Molecular Shape and Arrangement (cont) |               |    |  |
|--------|----------------------------------------|---------------|----|--|
| 4      | 2                                      | square planar | 90 |  |

| Electronegativity                                    |                            |                            |
|------------------------------------------------------|----------------------------|----------------------------|
| tendency of an atom to pull electrons towards itself | nuclear charge             | stronger =<br>greater pull |
|                                                      | distance of effrom nucleus | further = weaker pull      |
| trend                                                | down group                 | decrease                   |
|                                                      | across period              | increase                   |

| lonic compounds             |                                                    |                                                    |  |
|-----------------------------|----------------------------------------------------|----------------------------------------------------|--|
| lonic<br>bond               | IMFOA between oppositely charge ions               |                                                    |  |
| structure                   | giant ionic lattice structure                      |                                                    |  |
| strength                    | lattice energy                                     | (product of charges)/(sum of ionic radius)         |  |
| coordi-<br>nation<br>number | number of opp-charged ions surrounding central ion | ligand size increase, coordination number decrease |  |

| IONIC vs COVALENT CHARACTER         |                                                           |                                                            |                                                              |  |
|-------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|--|
| Pure<br>covalent                    | Approx<br>equal<br>electroneg                             | no distortion of elect                                     | ron cloud                                                    |  |
| Covalent with ionic character       | atoms with electroneg diff                                | dipole moment ( $\delta^+$ , $\delta^-$ )                  | incr electroneg diff = incr dipole                           |  |
| lonic with<br>covalent<br>character | polarisation<br>distorts<br>anion e <sup>-</sup><br>cloud | stronger polarising<br>power of cation<br>(charge density) | = increase<br>distortion =<br>increase covalent<br>character |  |
|                                     | some form of e <sup>-</sup> sharing                       | larger e <sup>-</sup> cloud = incr polarisability          | = increase<br>distortion =<br>increase covalent<br>character |  |
| Pure ionic character                | complete<br>transfer of<br>e <sup>-</sup>                 | e cloud remains inta                                       | act and spherical                                            |  |

| Metallic compounds               |                                                                |                                                     |                                     |  |
|----------------------------------|----------------------------------------------------------------|-----------------------------------------------------|-------------------------------------|--|
| Metallic<br>bond                 | EFoA between metallic cations and sea of delocalised, mobile e |                                                     |                                     |  |
|                                  | in giant metall                                                | ic lattice structure                                |                                     |  |
| Factors<br>affecting<br>strength | Charge No of e <sup>-</sup> delocalised per atom density       |                                                     |                                     |  |
| Unique<br>physical<br>properties | Malleable<br>(beat into<br>sheets)                             | Ductile (drawn into wire)                           | orderly<br>arrangement<br>of cation |  |
|                                  | Alloy<br>formation                                             | non-metal atoms<br>disrupts orderly<br>arrangement  | tensile<br>strength<br>increase     |  |
|                                  | Reflectivity                                                   | Delocalised e <sup>-</sup> absorb light and excited | promoted to higher level            |  |
|                                  |                                                                | De-excitation => release E                          | => light                            |  |
|                                  |                                                                |                                                     |                                     |  |

| Special Cases                                                            |                                                                   |                                                               |                                                                                 |
|--------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------|
| Anomalous Mr of<br>organic acid in<br>gaseous phase/-<br>benzene solvent | Apparent Mr<br>twice of<br>anomalous<br>Mr                        | dimeri-<br>sation                                             | either achieve<br>octet, or due to<br>favourable bonds<br>formed (release<br>E) |
| Different physical<br>properties of<br>structural<br>isomers             | 1,2-nitro-<br>phenol has<br>lower BP<br>than 1,4-ni-<br>trophenol | 1,2-nitro-<br>phenol<br>has<br>intramole-<br>cular H-<br>bond | less extensive<br>inter-molecular H<br>bond                                     |
| Bp of HI><br>HBr>HCI                                                     | incr in id-id<br>down group                                       | decrease<br>dipole<br>moment<br>down<br>group                 | incr id-id more<br>significant                                                  |
| Density of water > ice                                                   | ice -<br>hexagonal<br>arrangement<br>of water                     | large amoun                                                   | t of empty spaces                                                               |



By **L\_Wen** cheatography.com/l-wen/

Not published yet. Last updated 22nd September, 2023. Page 3 of 3. Sponsored by **Readable.com**Measure your website readability!
https://readable.com