
x86 assembly
by Kzderrick via cheatography.com/26001/cs/7101/

Jump Instru ctions

JZ Jump if zero ZF = 1

JNZ Jump if not zero ZF = 0

JC Jump if carry CF = 1

JNC Jump if not carry CF = 0

JO Jump if overflow OF = 1

JNO Jump if not overflow OF = 0

JS Jump if signed SF = 1

JNS Jump if not signed SF = 0

JP Jump if parity (even) PF = 1

JNP Jump if not parity (odd) PF = 0

Data Types

BYTE 8-bit unsigned integer.

SBYTE 8-bit signed integer.

WORD 16-bit unsigned integer

SWORD 16-bit signed integer

DWORD 32-bit unsigned integer.

SDWORD 32-bit signed integer.

Arrays - (from book pg 120-124)

.data

 arrayB BYTE 10h,20 h,30h
.code

 mov ESI,OFFSET arrayB
 mov AL,[ESI]
 inc ESI
------ --O FFS ET- --- --- ------
.data

 arrayW WORD 1000h, 200 0h, 3000h
.code

 mov ESI,OFFSET arrayW
 mov AX,[ESI]

LOOP

.data

 mov ax,0
 mov ecx,5
.code

 L1:
 inc ax
 loop L1

ASCII

CMP Instru ction

Compares the destin ation operand to the
source operand
Nondes tru ctive subtra ction of source from
destin ation (desti nation operand is not
changed) Syntax: CMP destin ation, source.
destin ation < sourcecarry flag set
destin ation > source.... ZF=0, CF=0

Registers

32-Bit 16-Bit 8-bit (high) 8 bit (low)

EAX AX AH AL

EBX BX BH BL

ECX CX CH CL

EDX DX DH DL

ESI SI

EDI DI

EBP BP

ESP SP

FLAGS

• The Carry flag (CF) is set when the result of
an unsigned arithmetic operation is too large to
fit into the destin ation.
• The Overflow flag (OF) is set when the result
of a signed arithmetic operation is too large or
too small to fit into the destin ation.
• The Sign flag (SF) is set when the result of an
arithmetic or logical operation generates a
negative result.

FLAGS (cont)

• The Zero flag (ZF) is set when the result of an
arithmetic or logical operation generates a
result of zero.
• The Auxiliary Carry flag (AC) is set when an
arithmetic operation causes a carry from bit 3
to bit 4 in an 8-bit operand.
• The Parity flag (PF) is set if the
least- sig nif icant byte in the result contains an
even number of 1 bits. Otherwise, PF is clear.
In general, it is used for error checking when
there is a possi- bility that data might be altered
or corrupted.

TEST Instru ction

Performs a nondes tru ctive AND operation
between each pair of matching bits in two
operan ds.No operands are modified, but the
Zero flag is affected.
Example: jump to a label if either bit 0 or bit 1
in AL is set.
test al,000 00011b
jnz ValueFound

ROT SHIFT

SAL (shift arithmetic left) is identical to SHL.
SAR (shift arithmetic right) performs a right
arithmetic shift on the destin ation operand.
ROL (rotate) shifts each bit to the left
The highest bit is copied into both the Carry
flag and into the lowest bit
No bits are lost
ROR (rotate right) shifts each bit to the right
The lowest bit is copied into both the Carry flag
and into the highest bit
No bits are lost
RCL (rotate carry left) shifts each bit to the left
Shifts a destin ation operand a given number of
bits to the right
The bit positions opened up by the shift are
filled by the least signif icant bits of the source
operand
The source operand is not affected
Copies the Carry flag to the least signif icant bit

By Kzderrick
cheatography.com/kzderrick/

Not published yet.
Last updated 13th May, 2016.
Page 1 of 2.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/kzderrick/
http://www.cheatography.com/kzderrick/cheat-sheets/x86-assembly
/uploads/kzderrick_1455145416_Screen Shot 2016-02-10 at 7.01.55 PM.png
http://www.cheatography.com/kzderrick/
https://apollopad.com

x86 assembly
by Kzderrick via cheatography.com/26001/cs/7101/

ROT SHIFT (cont)

Copies the most signif icant bit to the Carry
flagRCR (rotate carry right) shifts each bit to the
right
Copies the Carry flag to the most signif icant bit
Copies the least signif icant bit to the Carry flag
Shifts a destin ation operand a given number of
bits to the left
The bit positions opened up by the shift are
filled by the most signif icant bits of the source
operand
The source operand is not affected
Syntax:
SHLD destin ation, source, count

OR, XOR, AND, NOT

OR destin ation, source. 0,0=0. 0,1=1, 1,0=1.
1,1 = 1
XOR destin ation, source. 0,0=0. 0,1=1, 1,0=1.
1,1 = 0
NOT destin ati on...i nvert all
AND destin ation, source 0,0=0. 0,1=0, 1,0=0.
1,1 = 1

Procedures

SumOf PROC

 add EAX, EBX
 add EAX, ECX
 ret
SumOf ENDP

END main

Irvine 32 lib procedures

DumpMemm

 mov ESI,OFFSET array
 mov ECX,LE NGTHOF array
 mov EBX,TYPE array
 call DumpMem
ReadChar

 char BYTE ?
 .code
 call ReadChar
 mov char, AL
Random32

Irvine 32 lib procedures (cont)

 call Random32
 mov randVal, EAX
ReadDec ;same for dec, hex, int

 intVal DWORD ?
.code

 call ReadDec
 mov intVal,eax
ReadString

.data

 buffer BYTE 21 DUP(0) ; input
buffer

 byt eCount DWORD ? ; holds
counter

.code

 mov EDX,OFFSET buffer ; point to
the buffer

 mov ECX,SIZEOF buffer ; specify
max characters

 call ReadString ; input the
string

 mov byteCount, EAX ; number of
characters

WriteChar

 mov AL, 'A'
 call WriteChar
WriteD ec, hex,int
 mov eax,295
 call WriteDec
WriteS tring
 .data
 prompt BYTE " Enter your name: ",0
.code

 mov edx,OFFSET prompt
 call WriteS tring

Unsigned Comparison

PUSHAD POPAD

The PUSHAD instru ction pushes all of the 32-
bit genera l-p urpose registers on the stack in the
following order: EAX, ECX, EDX, EBX, ESP
(value before executing PUSHAD), EBP, ESI,
and EDI.The POPAD instru ction pops the
same registers off the stack in reverse order.

Signed

MUL IMUL

In 32-bit mode, MUL (unsigned

multiply) instruction multiplies an

8-, 16-, or 32-bit operand by

either AL, AX, or EAX

.data

val1 WORD 2000h

val2 WORD 100h

.code

mov ax,val1

mul val2 ; DX:AX = 00200000h, CF=1

IMUL (signed integer multiply)

multiplies an 8-, 16-, or 32-bit

signed operand by either AL, AX, or

EAX

Preserves the sign of the product

by sign-e xte nding it into the upper
half of the destin ation register
mov eax,48 23424
mov ebx,-423

imul ebx ; EDX:EAX =

FFFFFF FF8 663 5D80h, OF=0

By Kzderrick
cheatography.com/kzderrick/

Not published yet.
Last updated 13th May, 2016.
Page 2 of 2.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/kzderrick/
http://www.cheatography.com/kzderrick/cheat-sheets/x86-assembly
/uploads/kzderrick_1455156455_Screen Shot 2016-02-10 at 10.07.01 PM.png
/uploads/kzderrick_1455156473_Signed.png
http://www.cheatography.com/kzderrick/
https://apollopad.com

	x86 assembly - Page 1
	Jump Instructions
	ASCII
	TEST Instruction
	Data Types
	CMP Instruction
	ROT SHIFT
	Arrays - (from book pg 120-124)
	Registers
	FLAGS
	LOOP

	x86 assembly - Page 2
	PUSHAD POPAD
	Signed
	OR, XOR, AND, NOT
	MUL IMUL
	Procedures
	Irvine 32 lib procedures
	Unsigned Comparison

