

Vectors Cheat Sheet

by Kyyul via cheatography.com/162958/cs/34362/

Axioms For Vector Spaces

To show that a given set with two operations is **NOT** a vector space, we need to show properly that at least one property of the ten above is violated.

- (1) If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u} \oplus \mathbf{v} \in V$ [CLOSURE UNDER ADDITION]
- (2) If $\mathbf{u} \oplus \mathbf{v} = \mathbf{v} \oplus \mathbf{u}$ [COMMMUTATIVE LAW]
- (3) If $(u \oplus v) \oplus w = u \oplus (v \oplus u)$ [' \oplus ' IS ASSOCIATIVE]
- (4) V contains the object "0" which satisfies $\mathbf{u} \!\oplus \! 0 \! = \! 0 \! \oplus \! \mathbf{u}$

For each $u{\in}V$, there exist an object '-u' such that $u{\oplus}{\text{-}}u{=}0$ [ADDITIVE INVERSE]

- (6) If $u \in V^*$ and $k \in K$, then $k \odot u \in V$ [CLOSURE UNDER MULTIPLICATION]
- (7) $k\odot(u\oplus v)=(k\odot u)\oplus(k\odot v)$ [DISTRIBUTIVE LAW]
- $(8) \ (k+l) \odot u = (k \odot u) \oplus (l \odot u)$
- (9) $k \odot (l \odot u) = (kl \odot u)$
- (10) 1⊙**u=u**

Axioms For Vector Spaces

If $u, v \in V$, then $u \oplus v \in V$ [CLOSURE UNDER ADDITION]

By **Kyyul** cheatography.com/kyyul/

Not published yet. Last updated 29th September, 2022. Page 1 of 1. Sponsored by **Readable.com**Measure your website readability!
https://readable.com