ratography

SML Syntax

String

#'str character

String.sub string * int -> char n-th
character

chr ascii to
character

ord : char -> int character
to ascii

A concatenate

String.tokens (char -> bool) -> string -> tokenize a

string list string

String.explode string -> char list also
implode

List

@ : 'a list @ 'a list concatenati
on

List.partition : ('a -> bool) -> 'a list -> quicksort

'a list * 'a list

List.rev : 'a list -> 'a list reverse

List.exists (‘a -> bool) -> 'a list -> true for any

bool

List.all (*a -> bool) -> 'a list -> bool true for all

String.concatWith : string -> string list -> string

Referential Transparency

Replace any expression with another expression of "equal” value does not
affect the value of the expression

Equivalence

Two programs are equivalent iff

1. They both evaluate to the same value, or

2. They both raise the same exception, or

3. They both enter an infinite loop

Properties

1. Equivalence is an equivalence relation

2. Equivalence is a congruence (one program can be substituted for
another)

3.If e |-> e then e is equivalent to e’

By kvp_
cheatography.com/kvp/
Page 1 of 2.

Published 20th February, 2015.
Last updated 20th February, 2015.

COMP302 Cheat Sheet
by kvp_ via cheatography.com/20610/cs/3336/

Valuable & Total

Expression e is valuable iff there is some valuev s.t. e ==v
-lfe=(el1,e2)

-lfe=el1+e2

-lfe=el1:e2

then e is valuable iff e1 is valuable and e2 is valuable

A functionf : A -> B is total iff for all valuesv : A, f(v) is valuable

Currying

=== Non-curried ===
fun pow (x, y) int * int -> int =
case y of"
0 => 1
| _ => x * pow(x, y-1)
=== Curried ===

fun pow x : int -> int -> int =

fn (y) => case y of
0 =>1
| _ => x * pow(x, y-1)
fun pow x y =
case y of
0 =>1
| _ => x * pow(x, y-1)
=== Currying and Uncurrying ===
curry : (('a * 'b) -> '¢) -> ('a -> 'b -> 'c))
fun curry £ xy = £ (x,vy)
fun uncurry £ (x,y) = £ x y
uncurry : ('a -> 'b -> 'c) -> (('a 'b) -> 'c)

Composition

fun compose (f, g) = fn x => f (g x)

Using infix operator

val sqgrt_of abs = Math.sqgrt o Real.fromInt o abs
Pipelining and infix pipeline operator

“fun pipeline (f, g) =g f

infix !>

fun x !> £ = £ x

fun sqgrt_of_abs i =i !> Real.fromInt !> Math.sqgrt

datatype ‘a list = Nil | of ‘a * ’‘a list

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com


http://www.cheatography.com/
http://www.cheatography.com/kvp/
http://www.cheatography.com/kvp/cheat-sheets/comp302
http://www.cheatography.com/kvp/
https://readability-score.com

ratogra

Mergesort

fun split (1st int list) int list * int list =
case lst of
[1 = (0, 1)
| [x] => ([x], [1)
| X::y::xXs => let val (pilel, pile2) = split xs
in (x::pilel, y::pile2)
end
fun merge(lstl int 1list, 1st2 int 1list) int list
case (lstl, 1st2) of
([1, 1st2) => 1st2
| (Istl, [1) => 1stl
| (x::xs, y::ys) =>
(case x < y of
true => x::merge(xs,1lst2)
| false => y::merge(lstl, ys)
fun mergesort (lst int 1list) int list =
case lst of
[1 => 1
| [x] => [x]
| _ => let val (pilel, pile2) = split 1st

in merge (mergesort pilel, mergesort pile2)

Generalized math functions

(0]
| :j
Q

fun sum (£, a, b, inc)
if (a > b) then 0
else (f a) + sum(f, inc(a), b, inc)
fun piOver8 = sum(fn x => 1.0 / (x*(x+2.0)), a, b, fn x

=> x + 4.0)

fun integral (£, a, b, dx) =

dx * sum(f, a+dx/2.0, b, fn x => x+dx)

fun series (operator, £, lo, hi, inc, identity)

if (lo > hi) then identity

else operator((f lo), series (operator, f,

inc(lo), hi, inc, identity))

fun sumSeries (f, a, b, inc) = series (op +, f, a, b,

inc, 0)

fun prodSeries(f, a, b, inc) = series(op *, £, a, b,

inc, 1)
By kvp_ Published 20th February, 2015.
cheatography.com/kvp/ Last updated 20th February, 2015.

Page 2 of 2.

COMP302 Cheat Sheet
by kvp_ via cheatography.com/20610/cs/3336/

Data types

User defined types

datatype tree = Empty | Node of tree * int * tree
datatype 'a option = NONE | SOME of 'a

Type synonym

type intPairList = (int * int) list

map : ('a -> 'b) * 'a list -> b' list
fun map (f 1lst) =
case lst of
[1 => 1

| h::tail => (f h)::(map £ tail)

fun foldl(f, acc, 1lst) =

case lst of

[1 => acc
| h::t => foldl(f, f(h, acc), t) (*tail
recursive*)
fun foldr (£, acc, 1lst) =
case lst of
[1 => acc
| h::t => £(h, foldr(f, acc, t)) (*not tail

recursivex)

Associativity

"a => My == Tg = Ta => (b => T@)

f al a2 = (f al) a2

filter ('a -> bool) * 'a list -> 'a list

fun filter (p : 'a -> bool, 1lst 'a list) =
case lst of

[1 => 1
| x::Xs => if p x then x::(filter p xs)

else filter p xs

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com


http://www.cheatography.com/
http://www.cheatography.com/kvp/
http://www.cheatography.com/kvp/cheat-sheets/comp302
http://www.cheatography.com/kvp/
https://readability-score.com

	COMP302 Cheat Sheet - Page 1
	SML Syntax
	Valuable & Total
	Currying
	Refere­ntial Transp­arency
	Compos­ition
	Equiva­lence

	COMP302 Cheat Sheet - Page 2
	Mergesort
	Data types
	Map
	Fold
	Genera­lized math functions
	Associ­ativity
	Filter


