Cheatography

PSYC300A - test #2 Cheat Sheet
by ktown022 via cheatography.com/164409/cs/34853/

Equations!	
Deviation score:	(x-x̄)
Squared deviation score:	(x-x)2
Sum of squares:	SS= $\Sigma(x-\bar{x})2$
Variance:	SD2 = SS÷N
Standard deviation:	√variance or √SD2
Covariance	cov = SP÷N
Pearson correlation:	r = cov. ÷ (SDx) (SDy)
Slope:	by = $r(SDy \div SDx)$
intercept:	ay = \bar{y} - by(\bar{x})
Total variability:	SST = $\Sigma(Y-\bar{y})2$
explained variability:	SSR = $\Sigma(Y'-\bar{y})2$
unexplained variability	SSE = Σ (Y-Y')2
Standard error of prediction:	SDy-y' = SDy√1- r2
Predicting X':	X' = ax + bxY
Predicting Y':	Y' = ay + byX

General guidelines for test reliability		
>.85	very desirable	
.70 to .85	desirable aka moderately acceptable	
<.70	not desirable aka poor reliabilit	

describe relationship between two variables?

1.) Direction of the relationship:

Positive (+) or negative (-)

Positive correlation = As the values of x increase or decrease, so do the values of y *No relationship* = no consistent relationship between variables

Negative correlation = As the values of x increases, the value of y decreases, and vice versa

By ktown022

cheatography.com/ktown022/

2.) shape of the relationship

describe relationship between two variables? (cont)

Linear relationship = straight line relationships

All dots clustered around straight line
 Curvilinear relationship = consistent, predictable relationship, but not linear

 As the values of x increase, the values of y increases but at some point the pattern reverses

3.) Strength of the relationship

Subjective measure of relationship between two scores (e.g., weak, moderate, strong, no relationship)

how closely the data points cluster together The more spread out they are from a line of some sort, the weaker the correlation between variables

4.) Magnitude of the relationship

Objective measure of relationship based on computed r value: ranges from -1 to 1

biserial correlation

When to use it:

when one of the variables is nominal (with only two groups) and the other variable is interval/ratio *How to calculate:*use the same formula as pearson r

Curvilinear relationships:

Linear: Y' = a + bX
Quadratic: Y' = a +bX + cX2
Cubic: Y' = $a + bX + cX2 + dX3$
Quartic: $Y' = a + bX + cX2 + dX3 + eX4$

Comparing SDy-y' and SDy

When R does not equal Zero, SDy-y' will be smaller than SDy

When R=0 (no correlation/relationship), SDy-y' = SDy

When R=+/- 1 (perfect correlation), SDyy'=0

Not published yet. Last updated 22nd October, 2022. Page 1 of 2.

How do we describe our data?

1.) Shape	plotting a scatter plot, linearity, strength, direction, magnitude
2.) Central tendency	defining the regression line (mean of bivariate data)
3.) Variab- ility	standard error or estimates (SDY-Y')

Factors affecting R		
1.) Relati- onship is real and strong or weak	contributes to a bigger/sm- aller r	
2.) Sampling error	Sampling error = naturally occurring discrepancy, or error, that exists between a sample statistic and the corresponding parameter	
3.) Unmeasured third variable	contributes to a bigger/sm- aller r,Correlation tells us if a relationship between two variables exists but does not tell us about causation	
4.) Hetero- geneous sample	Data in which the sample of observations could be subdivided into two distinct sets on the basis of some other variable	
5.) Sampling from a restricted (truncated) range	The correlation coefficient will be affected by the range of score in the data	

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

PSYC300A - test #2 Cheat Sheet by ktown022 via cheatography.com/164409/cs/34853/

Factors affecting R (cont)		
6.) Non-linea-	Reminder: r underesti-	
rity: relati-	mates a curvilinear relati-	
onship is	onship, contributes to a	
curvilinear	smaller r	
7.) Hetero-	contributes to a smaller r	
scedasticity		
in the data		

PHI

When to use it:

 when both variables are nominal (with only two groups per variable, i.e., dichotomous)

Calculating Phi:

– use the same formula as pearson r

How to calculate Pearson r:

1.) Plot the data (scatterplot)		
2.) Compute bivariate statistics	(e.g., deviation scores, SP, COV)	
3.) Compute correlation coeffi-	(number beyond +/-1 means you did it	
cient r	wrong)	

Interpreting Pearson Correlation

< .10	no relationship
.10 to .30	weak relationship
> .30 to .50	moderate relationship
> .50	strong relationship

Reporting in APA format

1.)	Give variables, R = ?, Mean =	
describes	?, Standard deviation = ?, Give	
relati-	sample size, Mention strength	
onship in	and if its positive for negative	
statistical		
terms		
2.) Results in plain language		

By ktown022

cheatography.com/ktown022/

extra stuff

Homoscedasticity (a good thing):	Variability in Y scores remains constant across
	of X
Heteroscedasticity (not a good thing):	variability in y scores changes across increasing values of x, Caused by a skew in one or both variables
SST = SSy	SSe = SSy-y' (error)
SSr = SSt - SSe	$\Sigma(Y-Y') = 0$

For Y': if r=0, by=0 (i.e., regression line is parallel to the x-axis), and ay= \bar{y}

For X': if r=0, bx=0 (i.e., regression line is parallel to the x-axis), and ax= \bar{x}

As correlation (r) increases, the numerical value for b increases

Y-ÿ

Total variability =	_
differences between	
observed data (Y)	
and the mean value	
of Y	
Unexplained variab-	_
ility (i.e., residuals) =	
difference between	

Unexplained variablility (i.e., residuals) = difference between the observed value for Y and the predicted value for Y(Y') Explained variability = $-Y' - \bar{y}$ the difference between total and unexplained variab-

ility Standardized test = interval

Not published yet. Last updated 22nd October, 2022. Page 2 of 2.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Spearman rho

When to use it:
 one or both variables are on an ordinal
scale of measurement
- there is a weak curvilinear relationship in
interval/ratio data
- there is heteroscedasticity in interval/ratio
data
How to calculate:
Convert all scores into ranks
Lower scores get lower ranks
High scores get higher ranks
Use the pearson correlation formula to find
how consistently increases in one variable
are associated with increases in another
variable