Equations!	
Deviation score:	(x - $\overline{\mathrm{x}}$)
Squared deviation score:	$(x-\bar{x}) 2$
Sum of squares:	SS $=\Sigma(\mathrm{x}-\mathrm{z}) 2$
Variance:	SD2 $=$ SS $\div \mathrm{N}$
Standard deviation:	$\sqrt{ }$ variance or \checkmark SD2
Covariance	cov $=S P \div \mathrm{N}$
Pearson correlation:	$\begin{aligned} & r=\operatorname{cov} . \div(S D x) \\ & (S D y) \end{aligned}$
Slope:	by $=\mathrm{r}($ SDy \div-SDx $)$
intercept:	$\mathrm{ay}=\overline{\mathrm{y}}-\mathrm{by}(\overline{\mathrm{x}})$
Total variability:	SST $=\Sigma(\mathrm{Y}-\overline{\mathrm{y}})^{2}$
explained variability:	SSR $=\Sigma\left(Y^{\prime}-\bar{y}\right) 2$
unexplained variability	SSE $=\Sigma\left(Y-Y^{\prime}\right) 2$
Standard error of prediction:	$\begin{aligned} & \text { SDy-y' }=\mathrm{SDy} \sqrt{ } 1 \text { - } \\ & \text { r2 } \end{aligned}$
Predicting X ':	$X^{\prime}=a x+b x Y$
Predicting Y^{\prime} :	$Y^{\prime}=a y+b y X$

General guidelines for test reliability	
$>.85$	very desirable
.70 to	desirable aka moderately
.85	acceptable
$<.70$	not desirable aka poor reliability

describe relationship between two variables?

1.) Direction of the relationship:

Positive (+) or negative (-)
Positive correlation $=$ As the values of x increase or decrease, so do the values of y No relationship $=$ no consistent relationship between variables
Negative correlation $=A s$ the values of x increases, the value of y decreases, and vice versa
2.) shape of the relationship

describe relationship between two variables? (cont)

Linear relationship = straight line relationships

- All dots clustered around straight line Curvilinear relationship = consistent, predictable relationship, but not linear
- As the values of x increase, the values of y increases but at some point the pattern reverses

3.) Strength of the relationship

Subjective measure of relationship between two scores (e.g., weak, moderate, strong, no relationship)
how closely the data points cluster together The more spread out they are from a line of some sort, the weaker the correlation between variables
4.) Magnitude of the relationship

Objective measure of relationship based on computed r value: ranges from -1 to 1

biserial correlation

When to use it:

- when one of the variables is nominal (with only two groups) and the other variable is interval/ratio
How to calculate:
- use the same formula as pearson r

Curvilinear relationships:

Linear: $\mathrm{Y}^{\prime}=\mathrm{a}+\mathrm{bX}$
Quadratic: $\mathrm{Y}^{\prime}=\mathrm{a}+\mathrm{bX}+\mathrm{cX} 2$
Cubic: $Y^{\prime}=a+b X+c X 2+d X 3$
Quartic: $Y^{\prime}=a+b X+c X 2+d X 3+e X 4$

Comparing SDy-y' and SDy

When R does not equal Zero, SDy-y' will be smaller than SDy

When $\mathrm{R}=0$ (no correlation/relationship),
SDy-y' = SDy
When $R=+/-1$ (perfect correlation), SDy$y^{\prime}=0$

Not published yet.
Last updated 22nd October, 2022.
Page 1 of 2.

How do we describe our data?

1.) plotting a scatter plot, linearity, Shape strength, direction, magnitude	
2.)	defining the regression line
Central	(mean of bivariate data)
tendency	
3.)	standard error or estimates
Variab- ility	

Factors affecting R

1.) Relati- onship is real and strong or weak	contributes to a bigger/sm- aller r
2.) Sampling	
error	Sampling error = naturally occurring discrepancy, or error, that exists between a
	sample statistic and the corresponding parameter
3.)	contributes to a bigger/sm-
Unmeasured third variable aller r,Correlation tells us if a relationship between two variables exists but does	
	not tell us about causation

4.) Hetero- Data in which the sample of geneous sample observations could be subdivided into two distinct sets on the basis of some other variable
5.) Sampling The correlation coefficient from a restricted (truncated) range will be affected by the range of score in the data
-

Factors affecting R (cont)	
6.) Non-linea-	Reminder: r underesti-
rity: relati-	mates a curvilinear relati-
onship is	onship, contributes to a
curvilinear	smaller r
7.) Hetero-	contributes to a smaller r
scedasticity	
in the data	

PHI

When to use it:

- when both variables are nominal (with only two groups per variable, i.e., dichotomous)
Calculating Phi:
- use the same formula as pearson r

How to calculate Pearson r:	
1.) Plot the data (scatterplot)	
2.) Compute (e.g., deviation scores, bivariate statistics SP, COV)	
3.) Compute (number beyond $+/-1$ correlation coeffi- cient r	means you did it wrong $)$

Interpreting Pearson Correlation	
$<\|.10\|$	no relationship
$\|.10\|$ to $\|.30\|$	weak relationship
$>\|.30\|$ to $\|.50\|$	moderate relationship
$>\|.50\|$	strong relationship

Reporting in APA format

1.) Give variables, $R=$?, Mean $=$
describes ?, Standard deviation = ?, Give
relati- sample size, Mention strength
onship in and if its positive for negative
statistical
terms
2.) Results in plain language

extra stuff	
Homoscedasticity (a good thing):	Variability in Y scores remains constant across increasing values of X
Heteroscedasticity (not a good thing):	variability in y scores changes across increasing values of x, Caused by a skew in one or both variables
SST $=$ SSy	$\begin{aligned} & \text { SSe = SSy-y' } \\ & \text { (error) } \end{aligned}$
SSr $=$ SSt - SSe	$\Sigma\left(Y-Y^{\prime}\right)=0$
For Y^{\prime} : if $r=0$, by=0 (i.e parallel to the x-axis),	regression line is nd $a y=\bar{y}$
For X^{\prime} : if $r=0, b x=0$ (i.e parallel to the x-axis),	regression line is nd $a x=\bar{x}$
As correlation (r) incre value for b increases	es, the numerical
Total variability = differences between observed data (Y) and the mean value of Y	- Y-y
Unexplained variability (i.e., residuals) = difference between the observed value for Y and the predicted value for Y(Y')	-Y - Y^{\prime}
Explained variability $=$ the difference between total and unexplained variability	$-Y^{\prime}-\bar{y}$
Standardized test = interval	

Not published yet.
Last updated 22nd October, 2022.
Page 2 of 2.

Spearman rho

When to use it:

- one or both variables are on an ordinal scale of measurement
- there is a weak curvilinear relationship in interval/ratio data
- there is heteroscedasticity in interval/ratio data
How to calculate:
Convert all scores into ranks
Lower scores get lower ranks
High scores get higher ranks
Use the pearson correlation formula to find how consistently increases in one variable are associated with increases in another variable

By ktown022

cheatography.com/ktown022/

