## Cheatography

## Equations!

X = Categories of IV
$f=$ frequency of scores
$\sum$ (sigma) $=$ sum (to add
something up)
Relative Frequency $(r f)=f \div N$
$\mathrm{N}=$ total number of scores
Cumulative frequency $(c f)=$ start
at bottom $f$ and add up
Cumulative relative frequency
$(c r f)=c f \div N$
Range $=\operatorname{Max} \#-\operatorname{Min} \#$
Population mean $=\mu$
Sample mean $=M$ or $\bar{x}$
Deviation $=x-\mu$ or $x-\bar{x}$
Variance $=\Sigma(x-\bar{x})^{2} \div N$
Standard Deviation (SD) =
$\checkmark$ Variance OR $\sqrt{ }$ SD $^{2}$
Pearson's coefficient of skew $=$ $3(\bar{x}-M d n) \div S D$

## Types of scales of measur-

 ement!1.) Nominal ("categories of"): - No quantitative distinction between observations

- Categories are equivalent and discriminable: one is not better than or higher than the other(s) and can be distinguished from each other
- how many items/people are in one category/group - do not need/include crfor cf
- Cant create stem and leaf display
2.) Ordinal ("more of"):
- the data can be categorized and ranked
- Cant create stem and leaf display


## Types of scales of measurement! (cont)

3.) Interval ("how much of"): - the data can be categorized and ranked, and evenly spaced (e.g., temp) - Arbitrary zero, therefore, cannot speak meaningfully about ratios

- could have negative numbers
4.) Ratio ("Proportion of"):
- Equal intervals between objects represent equal differences (Eg., money)
- Has a meaningful zero

How we describe data
"Bell-- Kurtosis
shaped"
curve

- Norma
distri-
bution,
Gaussian
distri-
bution
platykurtic distribution = low
degree of
peakedness (<0)
normal distribution
$=$ mesokurtic distri-
bution (0)
leptokurtic distri-
bution = high
degree of
peakedness (>0)


## Definitions!

Descriptive statistics: Organizes, summarizes, and communicates a group of numerical observations
Inferential statistics: Allows tests of hypotheses using systematic, objective procedures

Discrete numbers: separate, indivisible categories (eg., 4 or 5 children, not 4.34 children)
Continuous numbers: infinite number of values fall between any two observed values (eg., Age, height, weight, time)
Independent variable (IV):
Feature(s) of a study that is/are used to explain or explore the participants behaviour

Dependent Variable (DV):
Behaviour of the participants that we are observing, measuring, or recording
Cumulative relative frequency
(crf):proportion of scores at or below a particular score

Cumulative frequency (cf): frequency of scores at or below a particular score

Relative frequency (rf): fraction of the total group associated with each scores
Modality:the number of peaks in a frequency distribution of data
positive skew: a lot of data on the lower end of the distribution
negative skew: a lot of data point on the higher end of the distribution

Semi-interquartile Range
(SIQR): the distance of a typical value from the median

## Definitions! (cont)

## Median Absolute deviation

(MAD): Absolute measure of how many physical units values deviate from the median

## Sum of squared deviations

1.) Compute $\bar{x}=\sum x X \div N$
2.) Compute the squared deviation for each score: $(x-\bar{x}) 2$
3.) Compute the sum of squared deviations (SS)
4.) Divide $S S$ by $N$ for the mean of squared deviations

## Graphic Figures!

If you have nominal or ordinal data: use BAR GRAPH

If you have Interval or Ratio data: use HISTOGRAM, LINE GRAPH, or POLYGON

Measures of Central Tendency!
1.) Mode (Mod or Mo)

- most frequent category/score in a distribution
- ALWAYS a value that is observed in the dataset
- No inferential statistics
- May not be representative
2.) Median ( $m d n$, $m d$ or $\bar{x}$ )
- Physical middle of an ordered set of data (aka, 50th percentile rank)
- less biased when interval/ratio data are severely skewed
- not affected by outliers or extreme scores



## By ktown022

cheatography.com/ktown022/

Not published yet.
Last updated 2nd October, 2022.
Page 1 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com
Measures of Central Tendency!
(cont)

- No inferential statistics
3.) Mean
- Average of all numbers
- Most common value used for descriptive/inferential analyses
- Applied only to interval/ratio data
- Is biased if the scores are strongly skewed
Data and Central Tendency!
Nominal: Mode
Ordinal: Mode, Median
Interval/Ratio: Mode, Median,
Mean

| Measurement and Variance! |  |  |
| :---: | :---: | :---: |
| Nominal: none Ordinal: range, SIQR, MAD Interval/Ratio: Range, SIQR, MAD, variance, SD |  |  |
| Interpretation of skew value |  |  |
| Range <br> of <br> Values | Skew | Data |
| Between <br> 0 and <br> 0.5 | Normal distribution | Use <br> Mean <br> and SD |
| Between <br> . 5 and <br> 1.0 | Mild to moderate skew | Use <br> Mean <br> and SD |
| Between <br> 1.0 and <br> 2.0 | moderate <br> to strong <br> skew | Use <br> Mean <br> and SD <br> if closer <br> to 1.0 <br> than 2.0 |
| Greater than 2.0 | Severe skew | Use <br> Median <br> and <br> MAD |

Measures of Variability!

## 1.) Range

- Distance covered by scores in a distribution from the smallest score (min) and largest score (max)
- unreliable: sensitive to extreme values
- least preferred option of measures of variability
2.) Semi-Interquartile Range (SIGR)
- Half the range of the middle $50 \%$ of observations
- Can be used with ordinal, interval, and ratio scales - Not affected by outliers or extreme scores
- Some values in the distribution are excluded
3.) Median Absolute Deviation (MAD)
- How to calculate it
$\rightarrow$ Find the median of the data set
$\rightarrow$ Compute the absolute deviation of each value in the data set from the median
$\rightarrow$ Subtract the median from the value
remove +/- (if they apply)
$\rightarrow$ Order the absolute deviation values from low to high:
$\rightarrow$ Find the median of the ordered deviation values: Mad

Measures of Variability! (cont)

- less sensitive (than standard deviation) to extreme scores or skews in data
- not useful in advanced statis-
tical procedures
4.) Variance
- average squared distance from the mean
- for computing descriptive statistics only
5.) Standard Deviation (SD)
- measure of the standard/average distance from the mean (how dispersed the scores are around the mean)
- sensitive to extreme scores or outliers and is therefore biased with skewed distributions


## Symmetrical vs. Skewed!

| Symmet- <br> rical | Skewed | skewed |
| :---: | :---: | :---: |
| Mean and median are always the same (in the middle) | mean the closest to the tail end |  |
| mode varies | mode is peak is median between | here the |
|  | Tail pointed towards high \# | Tail <br> pointed <br> towards <br> low \# |

[^0]
## By ktown022

cheatography.com/ktown022/

Not published yet.
Last updated 2nd October, 2022.
Page 2 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com


[^0]:    Use Median and median absolute deviations for
    extremely skewed data

