Cheatography

Trigonometric Identities	
sin ^{2+cos} 2=1	sec(x) = 1/cos(x)
cot(x) = 1/tan(x) OR cos(x)/sin(x)	tan(x) = sin(x)/cos(x)
$\csc(x) = 1/\sin(x)$	sec ^{2 = tan} 2+1

Graphing Steps

- 1. Domain
- 2. Intercepts
- 3. Asymptotes
- 4. Intervals of Increase and Decrease
- 5. Local Minimums and Maximums
- 6. Concavity and Inflection Points

Graphing Tips

VA: lim (x->+_infinity)	HA: lim (x->+_inf-
f(x) =_+infinity (left and	inity) f(x) = c at
right)	y=c
VA: Find by setting the denominator = 0 and solving for x	HA: y=0 if n <d, ax/bx if n=d, none if n>d</d,
First Derivative:	Second Deriva-
Intervals of increase or	tive: Concavity +
decrease + min/max	Inflection Points

*

by kristina_hayes via cheatography.com/182718/cs/38026/

Quotient: $f'(x)g(x) - g'(x)f(x)/g(x)^2$

Acceleration and Velocity

Calculus Midterm 2 Cheat Sheet

Acceleration is	(come to stop) 1. Find
the antiderivative	antiderivative of
of velocity	function
2. Find v(0) or C	(for distance) 1. Deriva-
and set = 0	tive, solve for t, deriva-
	tive, plug in

To find t take derivative, to find distance take integral

Evaluating Integrals

a+b/c = a/c + b/c	Indefinite: $F(x) + C$
F(b)-F(a) (find antide	rivative and plug in)

Unit Circle

By kristina_hayes cheatography.com/kristinahayes/

Not published yet. Last updated 13th April, 2023. Page 1 of 2.

Derivative Tests

1st: Positive to	2nd: f'(c) = 0 & f''(c)>0:
Negative: local	local min & concave up
max	
1st: Negative to	2nd: f'(c) = 0 & f''(c)<0:
Positive: local	local max & concave
min	down
Critical points	Inflection points when
when f'(x)=0	f''(x)=0

Intermediate Value Theorem

a <c<b< td=""><td>Used to</td></c<b<>	Used to
	find when
	f(x) has
	roots
When proving roots, show	To find c,
that one part is positive and	set y=0 and
the other is negative	solve for x
To show at most, show that there is 1	
critical value and $f(x)$ can only	Cross V

critical value and f(x) can only cross > amount of times

Explain that you are using IVT

Areas & Distances	
Derivative: rate of	Antiderivative: total
change	change
n or change t = b-a/n	RHS: E (n i=1) f(ti)
	change t
LHS: E (n-1 i=0) f(ti)	ti = a +i change t
change t	

Sponsored by **Readable.com** Measure your website readability!

https://readable.com

Cheatography

Calculus Midterm 2 Cheat Sheet by kristina_hayes via cheatography.com/182718/cs/38026/

U Subsitution
Step 1: Make a "u-subsititution" (let u=)
Step 2: Find du/dx
Step 3: Solve for dx
Step 4: Substitute dx and cancel out terms
Step 5: Integrate with respect to u
*If a definite integral, change the bounds
from x bounds to u bounds
*Add C if a indefinite integral

Mean Value Theorem	
Is continuous and differentiable	f(a)=f(b)
f'(c)=f(b)-f(a)/b-a	f'(c)=0
How large can this be?	

By MVT f'(c) = ... for some c in [0,x]. Then do the math. Hence for every x in interval f(x) is whatever the math proves.

Antiderivatives	
Function	Antiderivative
x^n	x^n+1/n+1
cos(x)	sin(x)
sin(x)	-cos(x)
sec^2(x)	tan(x)
sec(x)tan(x)	sec(x)

Derivatives	
Fucntion	Derivative
sin(x)	cos(x)
cos(x)	-sin(x)
tan(x)	sec^2(x)
csc(x)	-csc(x)
sec(x)	sec(x)tan(x)
cot(x)	-csc^2(x)

Optimization Problems	
Usually using two different formulas (like volume and perimeter)	If maximizing volume, solve for one variable and plug that it
Next, solve for derivative and set = 0	After solving for that variable, plug into original (volume) equation
For distance: $\sqrt{(x-a)^2}$ + critical point	^(y-b) 2 & solve for
May need to prove that something is a global min/max	
Description of the Deficite late and	
Properties of the Definite Integral	
Constant:	
Addition:	

Pulling a Constant:

Subtraction

Splitting

By kristina_hayes cheatography.com/kristinahayes/

Not published yet. Last updated 13th April, 2023. Page 2 of 2. Sponsored by **Readable.com** Measure your website readability! https://readable.com