Trigonometric Identities	
$\sin ^{2+\cos 2=1}$	$\sec (x)=$
	$1 / \cos (x)$
$\cot (x)=1 / \tan (x)$ OR	$\tan (x)=$
$\cos (x) / \sin (x)$	$\sin (x) / \cos (x)$
$\csc (x)=1 / \sin (x)$	$\sec ^{2}=\tan ^{2} 2+1$

Graphing Steps

1. Domain

2. Intercepts
3. Asymptotes
4. Intervals of Increase and Decrease
5. Local Minimums and Maximums
6. Concavity and Inflection Points

Graphing Tips

VA: lim (x->+_infinity) $f(x)=+$ infinity (left and right)	HA: $\lim \left(x->+_i n f-\right.$ inity) $f(x)=c$ at $y=c$
VA: Find by setting the denominator $=0$ and solving for x	HA: $y=0$ if $n<d$, $a x / b x$ if $n=d$, none if $n>d$
First Derivative: Intervals of increase or decrease + min/max	Second Derivative: Concavity + Inflection Points

By kristina_hayes

cheatography.com/kristina-
hayes/

Not published yet.
Last updated 13th April, 2023.
Page 1 of 2.

Derivative Tests	
1st: Positive to	2nd: $f^{\prime}(c)=0 \& f^{\prime \prime}(c)>0$:
Negative: local	local min \& concave up
max	
1st: Negative to	2nd: $f^{\prime}(c)=0 \& f^{\prime \prime}(c)<0:$
Positive: local	local max \& concave
min	down
Critical points	Inflection points when when $f^{\prime}(x)=0$
$f^{\prime \prime}(x)=0$	

Intermediate Value Theorem	
$\mathrm{a}<\mathrm{c}<\mathrm{b}$	Used to find when $f(x)$ has roots
	To find c, set $y=0$ and When proving roots, show that one part is positive and the other is negative
To show at most, show that there is 1 critical value and $f(x)$ can only cross x amount of times	
Explain that you are using IVT	

Areas \& Distances	
Derivative: rate of change	Antiderivative: total change
n or change $\mathrm{t}=\mathrm{b}-\mathrm{a} / \mathrm{n}$	RHS: $\mathrm{E}(\mathrm{n} \mathrm{i}=1) \mathrm{f}(\mathrm{ti})$ change t
LHS: $\mathrm{E}(\mathrm{n}-1 \mathrm{i}=0) \mathrm{f}(\mathrm{ti})$ change t	$\mathrm{ti}=\mathrm{a}+\mathrm{i}$ change t

Sponsored by Readable.com

Measure your website readability!
https://readable.com

U Subsitution

Step 1: Make a "u-subsititution" (let u=)
Step 2: Find du/dx
Step 3: Solve for dx
Step 4: Substitute dx and cancel out terms
Step 5: Integrate with respect to u
*If a definite integral, change the bounds from x bounds to u bounds
*Add C if a indefinite integral

Mean Value Theorem
Is continuous and differentiable $\quad f(a)=f(b)$
$f^{\prime}(c)=f(b)-f(a) / b-a$
How large can this be?
By MVT $f^{\prime}(c)=\ldots$ for some c in $[0, x]$. Then
do the math. Hence for every x in interval
$f(x)$ is whatever the math proves.

Antiderivatives	
Function	Antiderivative
$x^{\wedge} n$	$x^{\wedge} n+1 / n+1$
$\cos (x)$	$\sin (x)$
$\sin (x)$	$-\cos (x)$
$\sec 2(x)$	$\tan (x)$
$\sec (x) \tan (x)$	$\sec (x)$

By kristina_hayes
cheatography.com/kristinahayes/

Derivatives	
Fucntion	Derivative
$\sin (x)$	$\cos (x)$
$\cos (x)$	$-\sin (x)$
$\tan (x)$	$\sec ^{\wedge} 2(x)$
$\csc (x)$	$-\csc (x)$
$\sec (x)$	$\sec (x) \tan (x)$
$\cot (x)$	$-\csc \wedge^{\wedge} 2(x)$

Optimization Problems

Usually using two	If maximizing
different formulas	
(like volume and	volume, solve for one variable and perimeter)
pext, solve for that it	
derivative and set $=$ After solving for that variable, plug into original (volume) equation	

For distance: $\sqrt{ }(x-a)^{2+(y-b)} 2$ \& solve for critical point
May need to prove that something is a global min/max

Properties of the Definite Integral
Constant:
Addition:
Pulling a Constant:
Subtraction
Splitting

Not published yet.
Last updated 13th April, 2023.
Page 2 of 2.

Sponsored by Readable.com
Measure your website readability! https://readable.com

