Cheatogra

Ul event handling

msg receiver , msg

Product

AbstactFactory, ConcreteFactory, Handler(Handler), ConcreteHandler

AbstractProduct, ConcreteProd-

uct,Client
client , Product , Product msg receiver, sender (= /
)
msg)
_]

Container

API

Builder= API, ConcreteBuilder= container , API

Director= workflow, Product= ADT

Aggregate(Container ADT), ConcreteA-

Product , Product ggregator, Iterator, Concretelterator

I R

Command(API), ConcreteCommand,

Invoker(), Receiver(client)

, , ,undo

By kniz Published 24th June, 2020.
Last updated 24th June, 2020.

Page 1 of 9.

cheatography.com/kniz/

Programming Architecture Cheat Sheet
by kniz via cheatography.com/123738/cs/23432/

client ,

Product, ConcreteProduct, Creator,
ConcreteCreator

Product Creator

- Adapter

client ,

ObjectAdapter(), ClassAdpater()2
. Target=

e()
Adapter vs Proxy

, Adapter, Adapte-

Adapter interface vs proxy realSu-
bject redirection
Proxy

Abstraction, RefinedAbstraction(client
API), Implementor(ADT), Concre-

telmplementor

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/kniz/
http://www.cheatography.com/kniz/cheat-sheets/programming-architecture
http://www.cheatography.com/kniz/
https://readable.com

Cheatography

Adapter vs Bridge

. client . Bridge

- Mediator

workflow

interaction

interaction

Mediator, ConcreteMediator, Colleague,
ConcretreColleague

Mediator
, Mediator

))

Facade vs Mediator

Facade Interface vs Mediator
interaction
Facade vs Mediator

.\.’ I

, if-else

Context(client API), State, Concre-
teState

state , State state

By kniz
cheatography.com/kniz/

Programming Architecture Cheat Sheet
by kniz via cheatography.com/123738/cs/23432/

Subject(Observer , notify()
observer), ConcreteSubject,

Observer, ConcreteObserver(subject
ConcreteSubject notify .)

Component(client APl), Leaf(1:N sender, receiver , ,
), Composite(Component
APl)
- Strat
ont . herachy

3 3

Context(client API), Strategy, Concre-

teStategy

, ConcreteStategy
Stategy ,

Visitor, ConcreteVisitor, Element,
ConcreteElement SOLID - Single Responsibility Principle

ConcreteElement Visitor

Published 24th June, 2020.
Last updated 24th June, 2020.
Page 2 of 9.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/kniz/
http://www.cheatography.com/kniz/cheat-sheets/programming-architecture
http://www.cheatography.com/kniz/
https://readable.com

Cheatography

SOLID - Open Closed Principle

SOLID - Liskov substituion principle

SOLID - Interface Segregation principle

? .

? (mixin, interface), Delegation

SOLID - Dependency Inversion Principle

' , . (ADT) ()

Coupling vs Cohension

I .o

> (, Composition,)

System Service (FR) Contex-

t(NFR)

SDLC Water fall, Incremental,
Evolutionary, Spiral lterative,
Agile, RUP

RUP Inception, elaboration, constr-
uction, transition

Increm- RE RE, code code, Test

ental Test

Validation Verification , Validation

vs Verifi-

cation
By kniz

cheatography.com/kniz/

Programming Architecture Cheat Sheet
by kniz via cheatography.com/123738/cs/23432/

RE Feasibility Test > RE Elicitation
> Req Specification > Req
Validation

Elicitation =~ System model ~ Workshop,

Brainstorming, survey,
interview, role playing, protot-

yping . Prioritizati-
on&Negotiation NFR
(FR)

Negoti- ranking, ahp,

ation grouping, bubble sort, hundred
dollors

Specif- /

ication

SRS Software Requirement Specif-
ication (). Plan

Validation ()

- QA - Functionality

Suitability()
Accuracy

Interoperability() interaction

Published 24th June, 2020.
Last updated 24th June, 2020.
Page 3 of 9.

Security

Complianc- SW .,
e()

- QA - Reliability

Maturity() SW

Fault Tolerance(,
)

Recoverability() .

- QA - Usability
Usability
Understandabili- ,
ty() ?
Learnability()
Operability() SW

Attractiveness()

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/kniz/
http://www.cheatography.com/kniz/cheat-sheets/programming-architecture
http://www.cheatography.com/kniz/
https://readable.com

Programming Architecture Cheat Sheet
by kniz via cheatography.com/123738/cs/23432/

- QA - Effectivness - QA - Portability (cont) Quality Life cycle (cont)

Cheatogra

Effectiviness Replaceability(Architecture
? concerns
TimeBehavior() - Viewpoints 4+1
Resource Utilization(ints? Logical Views , Process View Respon- contract . /
) , , Development (, sibility ? . , private
), Deployment field
- QA - Maintainability Use- Activity/Info Flow Diagram, GRASP coupling, cohension, expert,
Analyzability() SW Case UseCase diagram controller, creator, don't talk to
ie stranger
Changeability() view 9
Logical Di D i L
Stability() Sw ogical Sequence Diagram, Domain ow , ,
View Model Class Diagram coupling
Testability SW ”
Develo- component diagram, package :
. hensi
- QA - Portability pment diagram cohension ,
view ?
A ili W
daptability(s Domain RE Conceptual class Inform- , private info
) Model? diagram. ation (encapsulated)
Installabilit
ity Process sequence, activity diagram Expert
) view
Co-existenc , SW
X ¥ Physical deployment diagram
) view
Quality Life cycle
Process Quality
Internal QA
QA
External Stake holder QA. 2
QA
Quality in QA ()
use
By kniz Published 24th June, 2020. Sponsored by Readable.com
cheatography.com/kniz/ Last updated 24th June, 2020. Measure your website readability!

Page 4 of 9. https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/kniz/
http://www.cheatography.com/kniz/cheat-sheets/programming-architecture
http://www.cheatography.com/kniz/
https://readable.com

Programming Architecture Cheat Sheet

‘heatoors
C I“" E l(']“:’[€ by kniz via cheatography.com/123738/cs/23432/

Creator , , B aggregate Elabor Baseline Modifi , LateBinding
B A B . ation Architecture . Baseline archir- ability
ceriallE ecture skeleton architecture () (, , ,
laborati .
Don't talk to stranger aboration () , . (HW),
- Pattern, Style, Idium () Ping,Echo(’)
HeartBeat(),
Architect == Architect Patt
ADD? Architecture Design Methodology S:cl fecture renttecture Fattemn () /Node ,
yle
Plan -> -> Architecture Driver -> Pattern?
attern? ,
do NFR Style +FR -> . (), (write), (
and -> Usecase, QA : '), Non-Repudication(,
check contraint -> Design components subsystem AccessControl(),
pattern?

)
- Unified process idium
UpP inception phase, elaboration,

phase test, code, planning, Req, Associ-
discip- analysis & design, business ation
lines modeling, deployment, config- Aggreg- owner owning
uration & change management, ation
Project management Compos-
Inception Business modeling, Req , ition

phase Prototyping, feasibility study

Source(), (Stimulus), (Artifact),
(Environment), (Response), (R-
esponse Measure)

By kniz Published 24th June, 2020. Sponsored by Readable.com
cheatography.com/kniz/ Last updated 24th June, 2020. Measure your website readability!
Page 5 of 9. https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/kniz/
http://www.cheatography.com/kniz/cheat-sheets/programming-architecture
http://www.cheatography.com/kniz/
https://readable.com

Programming Architecture Cheat Sheet
by kniz via cheatography.com/123738/cs/23432/

_ - Pipe and Filter (cont) - Process Control (cont)

class class, interface, component,

Cheatogra

diagram visibility

) H

deployment artifacts(file, db), node,

diagram components) - Repository

component port, provided interface, wos Repository, Components

diagram required interface,
component,
P Batch , &
sequence lifeline, message, interaction Sequencial) . interaction
use,
activity swim lanes, merge node, , BackUp&Restore .
diagram decision node, initial node, - Process Control components / (interaction
final node, merge node, fork Data Flow),
node , components ,
data flow external entity, process, Controller, Actuator, Process, Sensor
datastore
- Blackboard
- Batch Sequencial
Controller Actuator start/stop Data Centered
Data Flow . Actuator Process
Process input start/stop . Blackboard, Control, KnowledgeSource
Data Flow AS . sensor Controller . Closed -
input . loop
Program, Data Store KnowledgeSource 1
. Blackboard Knowle-
dgeSource blackboard
() ; Control
input
latency
- Pipe and Filter
Data Flow
By kniz Published 24th June, 2020. Sponsored by Readable.com
cheatography.com/kniz/ Last updated 24th June, 2020. Measure your website readability!

Page 6 of 9. https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/kniz/
http://www.cheatography.com/kniz/cheat-sheets/programming-architecture
http://www.cheatography.com/kniz/
https://readable.com

Programming Architecture Cheat Sheet
by kniz via cheatography.com/123738/cs/23432/

- Layered (cont) - Buffered Message Based

Cheatography

- Blackboard (cont)

. , Exception Implicit Asynchronous communication
? Handling depth
KnowledgeSource . MessageBroker, Consumer, Producer
- Plugin Architecture
KnowledgeSource Hierarchical
Producer msg xml broker
Hierarchical consumer
Layer Y
A Plugln . coreSy-
Layer pp ¢} y
stem
layer
Producer Consumer idle
2 5 / , producer
' - Virtual Machine :
) , layer
/ Application, Virtual Machine, Existing))
Platform
, SW
Distributed
- Non-buffered event invoc Client, Server
Implict asynchronous communication tier
software
Event source, event listener
interaction
listener /, (source, listener
)s
listener 5)
By kniz Published 24th June, 2020. Sponsored by Readable.com
cheatography.com/kniz/ Last updated 24th June, 2020. Measure your website readability!

Page 7 of 9. https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/kniz/
http://www.cheatography.com/kniz/cheat-sheets/programming-architecture
http://www.cheatography.com/kniz/
https://readable.com

Cheatography

- Client - server (cont)

, Control

. (presentation, businiess
logic),

Distributed

Tier
Layer vs
Tier

Layer , Tier

tier ,)

’ i

Distributed

Client, Broker, Server

Server . Broker Server load

Server client . Broker tier

, Server Broker register .

Client-Server , , ,

By kniz
cheatography.com/kniz/

- Dispatcher (cont)

Broker

- Broker

distributed

Broker, Client, Servant

CORBA. Node Broker
Broker Node Servant
Node Node
interaction ,
, (fault-torelance),
?
Distributed

Master, Slave
Master Slave
fault tolerance, (slave)

fault tolerance, reliability

Published 24th June, 2020.
Last updated 24th June, 2020.
Page 8 of 9.

Programming Architecture Cheat Sheet
by kniz via cheatography.com/123738/cs/23432/

Distributed
Peer Provider
Consumer contents
struct- unstructured , struct-
ured, ured
unstru-
ctured
DB
, hode
power
distributed
(oS) MVC
XML
XML

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/kniz/
http://www.cheatography.com/kniz/cheat-sheets/programming-architecture
http://www.cheatography.com/kniz/
https://readable.com

Programming Architecture Cheat Sheet
by kniz via cheatography.com/123738/cs/23432/

?

? micro service

Cheatography

View Control , Model

Distributed
SOA . SOA monolithic

. interaction
N DB) Microsoer-
vice API
encapsulation .DB
DB
RESTful? API . json

https .RESTful API
HTTP GET, POST

. API
; .
By kniz Published 24th June, 2020. Sponsored by Readable.com
cheatography.com/kniz/ Last updated 24th June, 2020. Measure your website readability!

Page 9 of 9. https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/kniz/
http://www.cheatography.com/kniz/cheat-sheets/programming-architecture
http://www.cheatography.com/kniz/
https://readable.com

	Programming Architecture Cheat Sheet - Page 1
	패턴 - 추상팩토리
	패턴 - 책임 연쇄
	패턴 - 팩토리메소드
	패턴 - Adapter
	패턴 - 빌더
	패턴 - 반복자
	Adapter vs Proxy
	추상팩토리 vs 빌더
	패턴 - Command
	패턴 - 브릿지

	Programming Architecture Cheat Sheet - Page 2
	Adapter vs Bridge
	패턴 - Composite
	패턴 - Observer
	패턴 - Mediator
	패턴 - Strategy
	패턴 - Visitor
	Facade vs Mediator
	SOLID - Single Respon­sib­ility Principle
	패턴 - State

	Programming Architecture Cheat Sheet - Page 3
	SOLID - Open Closed Principle
	SOLID - Liskov substi­tuion principle
	SOLID - Interface Segreg­ation principle
	요구공학 - QA - Reliab­ility
	SOLID - Dependency Inversion Principle
	요구공학 - QA - Usability
	Coupling vs Cohension
	요구공학 - QA - Functi­onality
	요구공학�

	Programming Architecture Cheat Sheet - Page 4
	요구공학 - QA - Effect­ivness
	최적설계 - Viewpoints 4+1
	최적설계 - GRASP
	요구공학 - QA - Mainta­ina­bility
	요구공학 - QA - Portab­ility
	최적설계 Quality Life cycle

	Programming Architecture Cheat Sheet - Page 5
	최적설계 - Pattern, Style, Idium
	최적설계 - ADD 방법론
	최적설계 - Unified process
	클래스 관계
	품질속성

	Programming Architecture Cheat Sheet - Page 6
	UML 표기
	최적설계 - Repository
	최적설계 - Process Control
	최적설계 - Blackboard
	최적설계 - Batch Sequencial
	최적설계 - Pipe and Filter

	Programming Architecture Cheat Sheet - Page 7
	최적설계 - Buffered Message Based
	최적설계 - PlugIn Archit­ecture
	최적설계 - Layered
	최적설계 - Virtual Machine
	최적설계 - Client - server
	최적설계 - Non-bu­ffered event invoc

	Programming Architecture Cheat Sheet - Page 8
	최적설계 - P2P
	최적설계 - Broker
	최적설계 - Multi tier
	최적설계 - Service oriented
	최적설계 - Dispatcher
	최적설계 - Master slave

	Programming Architecture Cheat Sheet - Page 9
	최적설계 - MVC
	최적설계 - micro service
	최적설계 - PAC

