AP Biology: Unit 7 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31763/

Natural Selection Background

2 definitions of evolution

1. descent with modification

2. change in the genetic composition of a population from generation to generation

natural	individuals with certain inherited traits tend to survive
selection:	and reproduce more than others because of those traits
artificial selection:	breeding to encourage the occurrence of desirable traits

*individuals don't evolve, populations evolve

*natural selection only works on traits that differ in individuals

*environmental factors change, so favorable traits change

Important People

1. Linnaeus

- made the format of naming species

2. Cuvier

- catastrophism: catastrophes cause changes in species

3. Hutton

- Earth's geological features due to mechanisms still around today (ex. rock cycle)

4. Lyell

- uniformitarianism: same processes occurring today also happened in the past

5. Lamarck

- use and disuse: parts of the body used become more advanced and those not used deteriorate

 - inheritance of acquired traits = organisms pass modifications to offspring

6. Darwin

- development of the theory of natural selection

Darwin's Evidence for Evolution

1. homology

 $\, {\scriptstyle \triangleright} \,$ similarity in characteristics resulting from a shared ancestry

- *homologous structures:* structures in different species that are similar (structurally) because of common ancestry

- *vestigial structure:* feature of an organism that is a historical remnant of one once used

By kmz_2022 cheatography.com/kmz-2022/

Not published yet. Last updated 10th May, 2022. Page 1 of 5.

Darwin's Evidence for Evolution (cont)

2. embryology

 structures present in embryos can explain the similarities in different species

- convergent evolution: similar features in independent evolutionary lineages

- analogous structures: characteristics that are similar because of convergent evolution

fossils

- indicate structural similarities between different species
- document formation of new species
- 4. biogeography
- 5. artificial selection

Allele Frequency

3 MECHANISMS THAT CHANGE ALLELE FREQUENCY

1. Natural Selection

→ improves the match between organism and the environment

- 2. Genetic Drift
- └> founder effect~ few individuals isolated from the larger population
- & establish a new population
- bottleneck effect∼ population is reduced by natural disast-

ers/human actions

- 3. Gene Flow
- → transfer of alleles between populations (from migration & mating)

genetic variation: differences in individuals composition of their genes/DNA segments (ex. mutations)

geographic variation: differences in the gene pools of geographically separate populations

- (^ microevolution ^)

Hardy-Weinberg

Hardy-Weinberg	frequencies of alleles and genotypes remain
principle:	constant for each generation

AP Biology: Unit 7 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31763/

Hardy-Weinberg (cont)		Selection	
Hardy-Weinberg equilibrium predicts the allele frequencies in a nonevolving population		relative fitness:	contribution an individual makes to the gene pool in relation to their ability to survive in their environment
5 Conditions			3 MODES OF SELECTION
1. NO Mutations		1. Direct-	favors 1 extreme/side
2. Random Mating		ional	
3. NO Natural Selection		selection	
4. Large Population Size		2. favors both extremes/sides	favors both extremes/sides
5. No Gene Flow		Disruptive selection	
* if one not present genes evolving (^ <i>microevolution</i> ^)		3. Stabil- izing selection	favors intermediate
Hardy-Weinberg Equations			Sexual Selection
p + q = 1 q = Frequency of dominant all q = Frequency of recessive allo	ve allele (a)	sexual selection:	individuals with certain characteristics are more likely to obtain a mate
(Frequency of AA) (Frequency of Aa) (Frequency of aa) $p^2 + 2pq + q^2 = 1$		sexual dimorp- hism:	differences between secondary sex characteristics of males and females
		intrasexual selection:	competition among individuals of 1 sex for mates
		intersexual selection:	1 sex choosy in selecting their mates of the other sex
		hetero- zygote advantage:	better reproductive success of heterozygotes (preserve variation)
			ution ^)
- By kmz 2022	lat published vot		Sponsorad by Poadable com

By **kmz_2022**

cheatography.com/kmz-2022/

Not published yet. Last updated 10th May, 2022. Page 2 of 5.

AP Biology: Unit 7 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31763/

Speciation	
adaptive radiation	period in which organisms form many new species whose adaptations have them fill different niches
punctuated equilibrium	long periods which a species undergoes little change interrupted by brief periods of sudden change
reproductive isolation:	biological factors that impede members of 2 species from producing viable, fertile offspring
postzygotic barrier:	reproductive barrier that prevents hybrid zygotes from developing
hybrid:	offspring resulting from the mating of 2 different species
prezygotic barrier:	reproductive barrier that hinders the fertilization between species
	PREZYGOTIC BARRIERS
1. Habitat isolation	different habitats then they never interact
2. Temporal isolation	breed at different times of the day/seasons/years
3. Behavioral isolation	courtship rituals differ
4. Mechanical isolation	morphological differences
5. Gamete isolation	sperm can't fertilize egg
	POSTZYGOTIC BARRIERS
1. Reduced hybrid viability	genes of parents impair hybrid development/survival
2. Reduced hybrid fertility	hybrid sterile due to chromosomes from parents
3. Hybrid breakdown	when hybrids mate, offspring are feeble/sterile
	Species Concepts
a . morpho- logical	by body shape/structural features
b. ecological	by ecological niche
c . phylog- enetic	smallest group that share a common ancestor
d. * biolog- ical*	by inbreeding of members

Speciation (cont)

 Imitations: designates absence of gene flow & doesn't apply to asexual organisms

Speciation Types				
a. allopatric speciation	when a species is geographically isolated from original population			
Geographic separation Speciation S	$ {\scriptstyle \hookrightarrow}$ geographic separation \rightarrow mutations \rightarrow reproductive isolation \rightarrow speciation			
b . sympatric speciation	when a species is isolated with NO geographic isolation			
c. parapatric speciation	when species interbreed over a geographic continuum			
(A macroevolution	Λ)			

(^ macroevolution ^)

Phylogeny evolutionary history of a species/group of organisms phylogeny branching diagram representing the evolutionary history phylogenetic of organisms tree axonomy naming and classifying forms of life taxonomic unit at any given level of classification axon cladistics organisms are placed into groups called clades based on common descent groups of species that includes an ancestral species & clade ALL its descents a common ancestor & ALL its descendents monophyletic group a common ancestor & SOME of its descendants paraphyletic group derived from 2+ different ancestors polyphyletic group group that is least closely related to the other oganisms outgroup ancestral character shared by members of a certain clade character originated in an ancestor not a member of the clade derived character that is new/unique to a certain clade character

By kmz_2022

By kmz_2022 cheatography.com/kmz-2022/ Not published yet. Last updated 10th May, 2022. Page 3 of 5.

AP Biology: Unit 7 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31763/

Phylogenetic Tree vs. Cladogram

* represent hypotheses

Binomial Nomenclature			
- made by:	Linnaeus		
- two parts:	genus & species		
- rules:	first word capitalized, second lowercase		
	all italicized/underlined		
	8 LEVELS OF CLASSIFICATION		
(Dear King Philip Came Over For Good Soup)			

 $\label{eq:class} Domain \rightarrow Kingdom \rightarrow Phylum \rightarrow Class \rightarrow Order \rightarrow Family \rightarrow Genus \rightarrow Species$

Kingdoms & Domains

* protista kingdom not really considered (closely related to the other eukarya kingdoms)

* evidence of common ancestry of all eukaryotes = *membrane-bound* organelles, linear chromosomes, & introns

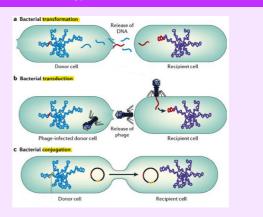
Prokaryotes Information

(bacteria, archaea, & protists)

capsule/slime layer	protects against dehydration/shield against immune system
fimbriae	hair like appendages used to attach to host
pilli	appendages that pull 2 cells together
nucleoid	region in a prokaryotic cell where DNA is located
positive chemotaxis	movement TOWARDS nutrients/oxygen
negative chemotaxis	movement AWAY from a toxic substance
endospore	can survive in harsh/insufficient environments (dormant but viable)
	POPULATION GROWTH

Prokaryotes Information (cont)

-	in	ideal	lab	conditions	=


typical human intestines =

4 Limitations

20 minutes 12-24 hours

- 1. *exhaust* nutrient supply
- 2. poison themselves with metabolic wastes
- 3. competition from other microorganisms
- 4. consumed by other organisms

Bacterial DNA Transfer Types

transformation: assimilation of external DNA transduction: viruses carry bacterial DNA from one cell to another conjugation: direct transfer of DNA

Endosymbiosis

Mitochondria~

- first eukaryotes acquired mitochondria by engulfing an aerobic prokaryote

→ evidence: DNA data & found in all eukaryotes

Plasids~

- eukaryotes acquired photosynthetic bacterium that evolved into plastids

▹ evidence: plastid and photosynthetic bacterium genes closely resemble

secondaryprocess in which a eukaryotic cell engulfed aendosymbiosisphotosynthetic eukaryotic cell

By kmz_2022 cheatography.com/kmz-2022/ Not published yet. Last updated 10th May, 2022. Page 4 of 5.

AP Biology: Unit 7 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31763/

Early Earth			
- Miller & Urey	demonstrated how the atmosphere could sponta-		
experiment:	neously produce organic molecules		
protocell	abiotic precursor of a living cell that had an internal chemistry different from its surroundings		
Greated spon	taneously when lipids are added to water		
*RNA World	life on Earth began with an RNA molecule that could copy itself		
Fibozymes~ e	enzyme that makes copies of RNA		
	EVENTS		
1. earth formation			
2. stromatolites/oldest cells (unicellular)			
3. photosynthetic bacteria (releases O2)			
4. aerobic resp	iration		
5. eukaryotic or	rganisms		
6. sexual repro	duction		
7. multicellular/terrestrial algae			
* more O2 in atmosphere helps ozone protect against radiation			
Cambrian explosion	brief time in history when there was an explosion of land & water diversity		
Glaws & defensive adaptation become present			
mass extinction causes	volcanic eruptions; asteroids/comets; human actions		

Fossils

FOSSILIZATION	RATES
HIGH	LOW
- existed a long time	- existed a short time
- abundant/widespread	- not abundant
- hard shells/skeleton	- soft/no shell/ no skeleton
- sedimentary rock	- not in sediments
radiometric dating	method to determine absolute age based on half-life
- isotope used:	carbon 14 (becomes nitrogen 14)

By kmz_2022 cheatography.com/kmz-2022/ Not published yet. Last updated 10th May, 2022. Page 5 of 5.