AP Biology: Unit 6 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31719/

Early Genetics		Early Genetics (cont)			
- biochemical group first thought to contain	proteins	base composition varies between each species (diff. % nucleotides)			
genetic information =		# of nitrogenous bases equ	ualed (A=T (G=C)	
Griffith bacterium experiment~					
smooth strain (S)	outer capsule;	DNA Structure			
	pathogenic	- x-ray crystallography ima	ges of	Rosalind	Franklin
rough strain (R)	NO capsule; NOT	DNA by:			
	pathogenic				
Conclusion~		- construction of the double	e helix	Watson	& Crick
R cells combined w/ killed S cells transformed		model by:			
into living S cells	living S cells - purines (2 rings)		A & G		
Avery bacterium experiment~		- pyrimidines (1 ring)		T & C	
- deactivated parts of dead S cells to find what		- A pairs with T by 2 H t		2 H bond	ls
transformed the cells		- C pairs with G by 3 H be		3 H bond	ls
Conclusion~		- base pairs present in 1 h	elix turn =	10	
DNA transforms the bacteria		antiparallel:		subunits run in opposite	
Hershey & Chase DNA experiment~				direction	S
phages reproduced in presence of DNA (not proteins)		DNA Replication Experime	ent		
Conclusion~		- experiment done by:	Meselson	& Stahl	
DNA is the genetic material		Prediction			
Chargaff nucleotide experiment~		replication style	# bands 1s	st rep.	# bands 2nd rep.
Conclusions~		conservative	2		2
		semiconservative	1		2
		dispersive	1		1
		Results			
		# bands 1st rep.	1		
		# bands 2nd rep.	2		
		conclusion =	semiconse	ervative	

C

By kmz_2022 cheatography.com/kmz-2022/ Not published yet. Last updated 18th April, 2022. Page 1 of 5. Sponsored by Readable.com Measure your website readability! https://readable.com

AP Biology: Unit 6 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31719/

origin of replication:site where the replication of DNA molecules begins- as missionreplication fork:Y-shaped region on the replicating DNA molecule- ch pail- E. coli- ch+ 1 replication origin- ch+ 1 replication origin- ch+ 500 nucleotides/sec- ch- human- b+ 100s-1000s of replication origins- b+ 100s-1000s of replication origins- b+ 50 nucleotides/sec- b- 2 items required to start replication:- b1. primer2. DNA template strand- how added nucleotides bring- ch- how added nucleotides bring- ch- DNA polymerase catalyzes triphosphate- ch- DNA polymerase adds to <bring< td="">3' endthe (elongates from 5' to 3')- lagging strand created fromOkazaki fragments- lagging strand created fromOkazaki fragments</bring<>	Replication Process		Err
replication fork:Y-shaped region on the replicating DNA molecule- cf pair- E. coli- cf+ 1 replication origin- cf+ 1 replication origin- f+ 500 nucleotides/sectelo- human- b+ 100s-1000s of replication origins- b+ 50 nucleotides/sec- b- 2 items required to start replication:- b1. primer2. DNA template strand- how added nucleotides bring energy:- hist- how added nucleotides bring energy:- f- b DNA polymerase catalyzes triphosphateGet- DNA polymerase adds to3' end- DNA polymerase adds to3' end- lagging strand created fromOkazaki fragments- lagging strand created fromOkazaki fragments- lagging strand created fromOkazaki fragments- additional strand- f- additional strand- f- additional strand- f- additional strand- f	origin of replication:	site where the replication of DNA molecules begins	- as mis
 E. coli 1 replication origin 500 nucleotides/sec human 100s-1000s of replication origins 500 nucleotides/sec 500 nucleotides/sec 2 terms required to start replication: 1. primer 2. DNA template strand how added nucleotides bring energy: nucleotides carried by triphosphate DNA polymerase catalyzes triphosphate 2 phosphates are released 2 phosphates are released 0. DNA polymerase adds to 3' end the (elongates from 5' to 3') transeries of 	replication fork:	Y-shaped region on the replicating DNA molecule	- ch <i>pai</i>
▶ 1 replication origin▶ 1▶ 500 nucleotides/secteld• human▶ 100s-1000s of replication origins▶ 500 nucleotides/secteld• 2 items required to start replication:teld1. primer2. DNA template strand• how added nucleotides bring energy:nucleotides carried by triphosphate▶ 0NA polymerase catalyzes triphosphateger• DNA polymerase adds to3' endthe(elongates from 5' to 3')- lagging strand created fromOkazaki fragments• lagging strand created fromOkazaki fragments	- E. coli		- cł
500 nucleotides/sec teld human <	↓ 1 replication origin		
 human h00s-1000s of replication origins 50 nucleotides/sec 2 items required to start replication: 2. DNA template strand hist sor how added nucleotides bring energy: nucleotides carried by triphosphate DNA polymerase catalyzes triphosphate 2 phosphates are released 2 or DNA polymerase adds to 3' end the (elongates from 5' to 3') trart series of ation 	հ 500 nucleotides/sec		
• 100s-1000s of replication origins • b • 50 nucleotides/sec telo - 2 items required to start replication: ising 1. primer 2. DNA template strand • how added nucleotides bring energy: inucleotides carried by triphosphate • nucleotides carried by triphosphate Ger • DNA polymerase catalyzes triphosphate ger • DNA polymerase adds to 3' end the (elongates from 5' to 3') • lagging strand created from Okazaki fragments • series of ation	- human		
Image: boot of the series of marked series			ьb
 2 items required to start replication: 2. DNA template strand hist sort how added nucleotides bring energy: nucleotides carried by triphosphate DNA polymerase catalyzes triphosphate 2 phosphates are released ONA polymerase adds to 3' end delongates from 5' to 3') argging strand created from Okazaki fragments transition transition	→ 50 nucleotides/sec		telo
1. primer 2. DNA template strand hist sor - how added nucleotides bring energy: nucleotides carried by triphosphate nucleotides carried by triphosphate - DNA polymerase catalyzes triphosphate Get - DNA polymerase adds to 3' end the transection 5' to 3') - lagging strand created from Okazaki fragments	- 2 items required to start replication:		(res
 how added nucleotides bring energy: nucleotides carried by triphosphate DNA polymerase catalyzes triphosphate 2 phosphates are released DNA polymerase adds to 3' end the transformation (elongates from 5' to 3') lagging strand created from Okazaki fragments 	1. primer	2. DNA template strand	hist
→ nucleotides carried by triphosphate → DNA polymerase catalyzes triphosphate Get ↓ 2 phosphates are released get get → DNA polymerase adds to 3' end fram the (elongates from 5' to 3') fram - lagging strand created from Okazaki fragments fram	- how added nucleotides bring energy:		
I→ DNA polymerase catalyzes triphosphate Get I→ 2 phosphates are released get - DNA polymerase adds to 3' end the transform 5' to 3') - lagging strand created from Okazaki fragments series of ation	hucleotides carried by triphosphate		
→ 2 phosphates are released ger → DNA polymerase adds to the 3' end the (elongates from 5' to 3') - lagging strand created from Okazaki fragments series of ation			Gei
- DNA polymerase adds to 3' end train train (elongates from 5' to 3') train tion to series of by the series of			ger
 (elongates from 5' to 3') lagging strand created from Okazaki fragments trar series of 	- DNA polymerase adds to the	3' end	tror
- lagging strand created from Okazaki fragments transeries of		(elongates from 5' to 3')	tior
	- lagging strand created from series of	Okazaki fragments	trar atic

Replication

helicase: enzyme that unwinds & separates the DNA strands topoisomerase: enzyme that breaks, swivels, & rejoins the DNA primase: enzyme that synthesizes RNA primers

primer: a short sequence of RNA that starts Okazaki fragments

polymerase III: enzyme that adds nucleotides

polymerase I: enzyme that removes the primer and replaces the nucleotides

ligase: enzyme that forms the final bonds between the fragments and nucleotides

By kmz_2022 cheatography.com/kmz-2022/

Not published yet. Last updated 18th April, 2022. Page 2 of 5.

rrors in DNA

mistakes	reducing the error rate
- change in the pair is replication	ne DNA nucleotide is <i>permanent/mutation</i> when <i>the</i> ated
- changes in	DNA nucleotides due to
	on errors 2. chemicals 3. x-rays 4. spontaneously
telomeres: m end of a chro	ultiple repetitions of a short nucleotide sequence at the mosome
buffer zone	e to delay erosion of the genes as they get replicated
telomerase: e (restore origi	enzyme that catalyzes the lengthening of telomeres nal length)
histone: prote somes	in responsible for the first level of packing of chromo-
nucleosome:	segment of DNA wound around a protein unit
_	
Gene Expres	sion Background
gene:	region of DNA expressed to produce a functional product (polypeptide/RNA molecule)
gene: transcrip- tion:	region of DNA expressed to produce a functional product (polypeptide/RNA molecule) synthesis of RNA from DNA template
gene: transcrip- tion: transl- ation:	region of DNA expressed to produce a functional product (polypeptide/RNA molecule) synthesis of RNA from DNA template synthesis of proteins from encoded mRNA
gene: transcrip- tion: transl- ation: primary transcript:	region of DNA expressed to produce a functional product (polypeptide/RNA molecule) synthesis of RNA from DNA template synthesis of proteins from encoded mRNA initial RNA transcript from any gene (pre-mRNA)
gene: transcrip- tion: transl- ation: primary transcript: codon:	region of DNA expressed to produce a functional product (polypeptide/RNA molecule) synthesis of RNA from DNA template synthesis of proteins from encoded mRNA initial RNA transcript from any gene (pre-mRNA) 3 nucleotide sequence that specifies a particular amino acid
gene: transcrip- tion: transl- ation: primary transcript: codon: codon: - eukary- otes~	region of DNA expressed to produce a functional product (polypeptide/RNA molecule) synthesis of RNA from DNA template synthesis of proteins from encoded mRNA initial RNA transcript from any gene (pre-mRNA) 3 nucleotide sequence that specifies a particular amino acid transcribe DNA to pre-mRNA
gene: transcrip- tion: transl- ation: primary transcript: codon: - eukary- otes~	region of DNA expressed to produce a functional product (polypeptide/RNA molecule) synthesis of RNA from DNA template synthesis of proteins from encoded mRNA initial RNA transcript from any gene (pre-mRNA) 3 nucleotide sequence that specifies a particular amino acid transcribe DNA to pre-mRNA from nucleus to ribosome
gene: transcrip- tion: transl- ation: primary transcript: codon: codon: - eukary- otes~	region of DNA expressed to produce a functional product (polypeptide/RNA molecule) synthesis of RNA from DNA template synthesis of proteins from encoded mRNA initial RNA transcript from any gene (pre-mRNA) 3 nucleotide sequence that specifies a particular amino acid transcribe DNA to pre-mRNA from nucleus to ribosome transcribe DNA to mRNA

Sponsored by Readable.com Measure your website readability! https://readable.com

AP Biology: Unit 6 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31719/

Transcription	
RNA polymerase:	enzyme that controls the transc- ription of DNA to RNA
	ns the RNA nucleotides
⊾ moves 3' to 5'	(strand formed 5' to 3')
3 STAGES OF	TRANSCRIPTION
1. Initiation	
- transcription factors:	protein that allows for polymerase to attach to DNA and transcribe
- 3 items to make up transc- ription initiation complex =	transcription factors, RNA polyme- rase, & promoter
- TATA box:	promoter that is 20-25 nucleotide from the starting point
* prokaryotes have NO transcrip	tion factors
2. Elongation	
a. 10-20 nucleotides exposed at	a time
b. nucleotides added to the 3' er	nd of the RNA molecule
- difference between RNA & DNA nucleotides =	different sugars
- nucleotide RNA that DNA	uracil
doesn't have	
- RNA & DNA nucleotides	hydrogen bonds
held together by	
3. Termination	
a. transcription of the polyadeny	<i>lation signal</i> adds nucleotides of
AAUAAA to RNA	
b. protein cuts the pre-mRNA fro	om polymerase = end of process!

С

By kmz_2022 cheatography.com/kmz-2022/

Not published yet. Last updated 18th April, 2022. Page 3 of 5. Sponsored by **Readable.com** Measure your website readability! https://readable.com

(create 3D structure; contain functional groups; H bond

w/ DNA or RNA)

AP Biology: Unit 6 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31719/

tRNA: transfers amino acids from cytoplasm to ribosomes (& contain anticodon)

- → anticodon: nucleotide triplet on tRNA molecule
- **\+'wobble':** flexible base pairing at the 3rd codon position
- # of amino acids used= 20

-makeup of a ribosome:

- large & small subunit~ made of proteins and rRNAs

(eukaryotes in nucleolus & prokaryotes in cytoplasm)

Translation

3 STAGES OF TRANSLATION

1. Initiation

a. small subunit binds to mRNA & initiator tRNA

b. <i>translation initiator</i> <i>complex=</i>	attachment of large subunit (& initiation factors)
2. Elongation	
a. codon recognition-	anticodon of tRNA pairs w. mRNA codon
b. peptide bond formation-	removes polypeptide from tRNA by formin peptide bond
c. translocation-	empty tRNA released
* ribosome moves 5' to 3'	,
3. Termination	
a. stop codon-	"release" factor accepted
b. hydrolysis of bond-	freeing polypeptide
c. subunits dissociate-	mRNA can be used again

Translation Diagram

polyribosomes: series of ribosomes moving over an mRNA at the same time

chaperone protein: proteins that assist polypeptides in forming 3D structures

signal peptides: sequence of amino acids at beginning of polypeptide tagging it to where it will go

Nucleotide Mutations

point mutation: change in a single nucleotide

frameshift mutation: change in nucleotide # to not be a multiple of 3

- hay still code for same amino acid
- h may code for stop codon early
- - Sponsored by Readable.com Measure your website readability! https://readable.com

Not published yet. Last updated 18th April, 2022. Page 4 of 5.

AP Biology: Unit 6 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31719/

Regulation of Gene Expression

- responds to changes in environmental conditions
- either adjusts activity of enzymes present or production of enzymes

- 3 things to make up an <i>operon</i> :	operator; promoter; genes
operator:	segment of DNA within promoter that controls the access of RNA polymerase to the genes
repressor:	protein that binds to operator to block attachment of RNA polymerase
hade by activity	of regulatory gene
repressible operon:	transcription is inhibited by small molecule binding to regulatory protein
inducible	stimulated when small molecule binds to

operon: regulatory protein

Lac Operon

- high lactose = allolactose bind to repressor to change shape & no longer attach

- low glucose = high levels of cAMP combine with CAP

By kmz_2022

cheatography.com/kmz-2022/

Not published yet. Last updated 18th April, 2022. Page 5 of 5.

Differential Gene Expression

- differential gene expression = different cell types
- 3 processes of development:
- 1. cell division 2. cell differentiation 3. morphogenesis

cytoplasmic determinants: substances in the egg that influence the course of early development

induction: embryonic cells influence the development of another (change in gene expression)

homeotic genes: genes that control pattern formation as an organism develops

Biotechnology

Gel electrophoresis

- separates DNA by size and charge
- DNA negatively charges
- smaller segments = farther to bottom

Polymerase Chain Reaction (PCR)

- create many copies of DNA segment
- \vdash DNA denatured \rightarrow primers added \rightarrow DNA replicated

Recombinant DNA

- DNA segment put into plasmid to be reproduced

DNA Sequencing

- establish the order of nucleotides
- Jabeled with dye

Sponsored by Readable.com Measure your website readability! https://readable.com