

by kmz_2022 via cheatography.com/145729/cs/31719/

Early Genetics	
- biochemical group first thought to contain genetic information =	proteins
Griffith bacterium experiment~	
smooth strain (S)	outer capsule; pathogenic
rough strain (R)	NO capsule; NOT pathogenic
Conclusion~	
R cells combined w/ killed S cells transformed into living S cells	
Avery bacterium experiment~	
- deactivated parts of dead S cells to find what transformed the cells	
Conclusion~	
DNA transforms the bacteria	
Hershey & Chase DNA experiment~	
phages reproduced in presence of DNA (not proteins)	
Conclusion~	
DNA is the genetic material	
Chargaff nucleotide experiment~	
Conclusions~	

Early Genetics (cont)

base composition varies between each species (diff. % nucleotides) # of nitrogenous bases equaled (A=T G=C)

DNA Structure	
- x-ray crystallography images of DNA by:	Rosalind Franklin
→ DNA is a helical shape	
- construction of the double helix model by:	Watson & Crick
- purines (2 rings)	A & G
- pyrimidines (1 ring)	T & C
- A pairs with T by	2 H bonds
- C pairs with G by	3 H bonds
- base pairs present in 1 helix turn =	10
antiparallel:	subunits run in opposite directions

DNA Replication Experiment				
- experiment done by:	Meselson & Stahl			
Prediction				
replication style	# bands 1st rep.	# bands 2nd rep.		
conservative	2	2		
semiconservative	1	2		
dispersive	1	1		
Results				
# bands 1st rep.	1			
# bands 2nd rep.	2			
conclusion =	semiconservative			

By kmz_2022 cheatography.com/kmz-2022/

Not published yet. Last updated 18th April, 2022. Page 1 of 5.

by kmz_2022 via cheatography.com/145729/cs/31719/

	ocess

origin of replication: site where the replication of DNA

molecules begins

replication fork: Y-shaped region on the replicating

DNA molecule

- E. coli

↓ 1 replication origin

→ 500 nucleotides/sec

- humar

→ 100s-1000s of replication origins

→ 50 nucleotides/sec

- 2 items required to start replication:

1. primer

2. DNA template strand

- how added nucleotides bring energy:

→ DNA polymerase catalyzes triphosphate

→ 2 phosphates are released

- DNA polymerase adds to

3' end

the...

(elongates from 5' to 3')

- lagging strand created from

Okazaki fragments

series of...

Replication

helicase: enzyme that unwinds & separates the DNA strands topoisomerase: enzyme that breaks, swivels, & rejoins the DNA primase: enzyme that synthesizes RNA primers

primer: a short sequence of RNA that starts Okazaki fragments

polymerase III: enzyme that adds nucleotides

polymerase I: enzyme that removes the primer and replaces the

nucleotides

ligase: enzyme that forms the final bonds between the fragments and nucleotides

Errors in DNA

- as replication occurs, DNA polymerase finds & corrects any mistakes ---- reducing the error rate
- change in the DNA nucleotide is *permanent/mutation* when ---- the pair is replicated
- changes in DNA nucleotides due to...
- → 1. replication errors 2. chemicals 3. x-rays 4. spontaneously

telomeres: multiple repetitions of a short nucleotide sequence at the end of a chromosome

▶ buffer zone to delay erosion of the genes as they get replicated

telomerase: enzyme that catalyzes the lengthening of telomeres (restore original length)

histone: protein responsible for the first level of packing of chromosomes

nucleosome: segment of DNA wound around a protein unit

Gene Expression Background

gene: region of DNA expressed to produce a functional

product (polypeptide/RNA molecule)

transcrip- synthesis of RNA from DNA template

tion:

ation:

transl- synthesis of proteins from encoded mRNA

primary initial RNA transcript from any gene (pre-mRNA)

transcript:

codon: 3 nucleotide sequence that specifies a particular amino

acid

- eukary- transcribe DNA to pre-mRNA

otes~

from nucleus to ribosome

prokar-yotes~

transcribe DNA to mRNA

from cytoplasm to ribosome

By kmz_2022 cheatography.com/kmz-2022/

Not published yet. Last updated 18th April, 2022. Page 2 of 5.

by kmz_2022 via cheatography.com/145729/cs/31719/

Transcription

RNA polymerase: enzyme that controls the transc-

ription of DNA to RNA

→ pries DNA strands apart & joins the RNA nucleotides

→ moves 3' to 5' (strand formed 5' to 3')

3 STAGES OF TRANSCRIPTION

1. Initiation

- transcription factors: protein that allows for polymerase to

attach to DNA and transcribe

- 3 items to make up transcription initiation complex =

transcription factors, RNA polyme-

rase, & promoter

- TATA box: promoter that is 20-25 nucleotide

from the starting point

2. Elongation

a. 10-20 nucleotides exposed at a time

b. nucleotides added to the 3' end of the RNA molecule

- difference between RNA &

different sugars

DNA nucleotides =

- nucleotide RNA that DNA uracil

doesn't have...

- RNA & DNA nucleotides hydrogen bonds

held together by...

3. Termination

a. transcription of the *polyadenylation signal* adds nucleotides of AAUAAA to RNA

b. protein cuts the pre-mRNA from polymerase = end of process!

Transcription Diagram

Pre-mRNA Modification

- 5' end receives 5' cap
- 3' end receives **poly-A tail** (enzyme adds 50-250 more A nucleotides)
- → protect mRNA from hydrolytic enzymes

RNA process of removing RNA sections from pre-mRNA splicing:

- introns: noncoding sequences of pre-mRNA

- exons: sequences of pre-mRNA used for translation

- 3 benefits of introns:
- → make many differnet polypeptides
- increase exon shuffling (new protein function)

ribozymes: RNA molecule that functions as an enzyme

(create 3D structure; contain functional groups; H bond w/ DNA or RNA)

 \mathbf{C}

By kmz_2022 cheatography.com/kmz-2022/

Not published yet. Last updated 18th April, 2022. Page 3 of 5.

^{*} prokaryotes have NO transcription factors

by kmz_2022 via cheatography.com/145729/cs/31719/

Ribosome Structure

tRNA: transfers amino acids from cytoplasm to ribosomes (& contain anticodon)

- → anticodon: nucleotide triplet on tRNA molecule
- y'wobble': flexible base pairing at the 3rd codon position
- # of amino acids used= 20
- -makeup of a ribosome:
- large & small subunit made of proteins and rRNAs (eukaryotes in nucleolus & prokaryotes in cytoplasm)

Translation

3 STAGES OF TRANSLATION

1. Initiation

a. small subunit binds to mRNA & initiator tRNA

b. *translation initiator* attachment of large subunit (& initiation *complex=* factors)

2. Elongation

a. codon recognition b. peptide bond
 formation c. translocation anticodon of tRNA pairs w. mRNA codon
 removes polypeptide from tRNA by forming
 peptide bond
 empty tRNA released

. .

* ribosome moves 5' to 3'

3. Termination

a. stop codon- "release" factor accepted
b. hydrolysis of bond- freeing polypeptide
c. subunits dissociate- mRNA can be used again

Translation Diagram

polyribosomes: series of ribosomes moving over an mRNA at the same time

chaperone protein: proteins that assist polypeptides in forming 3D structures

signal peptides: sequence of amino acids at beginning of polypeptide tagging it to where it will go

Nucleotide Mutations

point mutation: change in a single nucleotide

frameshift mutation: change in nucleotide # to not be a multiple of 3

- → may still code for same amino acid
- → may code for stop codon early
- → may result in protein not functioning properly

By kmz_2022 cheatography.com/kmz-2022/

Not published yet. Last updated 18th April, 2022. Page 4 of 5.

by kmz_2022 via cheatography.com/145729/cs/31719/

Regulation of Gene Expression

- responds to changes in environmental conditions
- either adjusts activity of enzymes present or production of enzymes

- 3 things to make up an operator; promoter; genes

operon:

operator:

segment of DNA within promoter that controls the

access of RNA polymerase to the genes

repressor: protein that binds to operator to block attachment

of RNA polymerase

→ made by activity of *regulatory gene*

transcription is inhibited by small molecule repressible

operon: binding to regulatory protein

inducible stimulated when small molecule binds to

operon: regulatory protein

Lac Operon

- high lactose = allolactose bind to repressor to change shape & no
- low glucose = high levels of cAMP combine with CAP

Differential Gene Expression

- differential gene expression = different cell types
- 3 processes of development:
- 1. cell division 2. cell differentiation 3. morphogenesis

cytoplasmic determinants: substances in the egg that influence the course of early development

induction: embryonic cells influence the development of another (change in gene expression)

homeotic genes: genes that control pattern formation as an organism develops

Biotechnology

Gel electrophoresis

- separates DNA by size and charge
- DNA negatively charges

Polymerase Chain Reaction (PCR)

- create many copies of DNA segment
- → DNA denatured → primers added → DNA replicated

Recombinant DNA

- DNA segment put into plasmid to be reproduced

DNA Sequencing

- establish the order of nucleotides

By kmz_2022 cheatography.com/kmz-2022/ Not published yet. Last updated 18th April, 2022. Page 5 of 5.