\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{kmz\_2022} \pdfinfo{ /Title (ap-biology-unit-5.pdf) /Creator (Cheatography) /Author (kmz\_2022) /Subject (AP Biology: Unit 5 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{00E893} \definecolor{LightBackground}{HTML}{EFFDF8} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{AP Biology: Unit 5 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{kmz\_2022} via \textcolor{DarkBackground}{\uline{cheatography.com/145729/cs/31651/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}kmz\_2022 \\ \uline{cheatography.com/kmz-2022} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 18th April, 2022.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{x{2.66 cm} x{2.204 cm} x{2.736 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{Comparing Reproduction}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{3}{x{8.4cm}}{\{\{ac\}\}{\bf{ASEXUAL vs. SEXUAL}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \{\{border=1\}\}{\bf{asexual}} & \{\{border=1\}\}{\bf{similarities}} & \{\{border=1\}\}{\bf{sexual}} \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} \{\{br=1\}\}- 1 parent & \{\{br=1\}\}- creates offspring & - 2 parents \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} \{\{br=1\}\}- identical genetics & \{\{br=1\}\}- offspring \seqsplit{gorw/develop} & - genetic variation \tn % Row Count 10 (+ 3) % Row 4 \SetRowColor{LightBackground} \{\{br=1\}\}\{\{bb=1\}\}- quicker \& less energy & \{\{br=1\}\}- use DNA & \{\{bb=1\}\}- slower \& more energy \tn % Row Count 13 (+ 3) % Row 5 \SetRowColor{white} \{\{br=1\}\}{\emph{advantages}} & & \{\{bl=1\}\}{\emph{advantages}} \tn % Row Count 15 (+ 2) % Row 6 \SetRowColor{LightBackground} \{\{br=1\}\}- well-adapted (stable environment) & & \{\{bl=1\}\}- increased diversity \tn % Row Count 19 (+ 4) % Row 7 \SetRowColor{white} \{\{br=1\}\}- large \# offspring quickly & & \{\{bl=1\}\}- adapt to changed (unstable environment) \tn % Row Count 23 (+ 4) % Row 8 \SetRowColor{LightBackground} \{\{br=1\}\}- reliable (fewer steps) & & \{\{bl=1\}\}- genetic variation \tn % Row Count 26 (+ 3) % Row 9 \SetRowColor{white} \{\{br=1\}\}- no need for a mate & & \{\{bl=1\}\} \tn % Row Count 28 (+ 2) % Row 10 \SetRowColor{LightBackground} \{\{br=1\}\}\{\{bb=1\}\}- less time \& energy & \{\{bb=1\}\} & \{\{bl=1\}\}\{\{bb=1\}\} \tn % Row Count 31 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{2.66 cm} x{2.204 cm} x{2.736 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{Comparing Reproduction (cont)}} \tn % Row 11 \SetRowColor{LightBackground} \mymulticolumn{3}{x{8.4cm}}{\{\{ac\}\}{\bf{MEIOSIS vs. MITOSIS}}} \tn % Row Count 1 (+ 1) % Row 12 \SetRowColor{white} {\bf{meiosis}} & {\bf{similarities}} & {\bf{mitosis}} \tn % Row Count 3 (+ 2) % Row 13 \SetRowColor{LightBackground} \{\{br=1\}\}- 2 divisions = 4 daughter cells & \{\{br=1\}\}- interphase & - 1 division = 2 daughter cells \tn % Row Count 6 (+ 3) % Row 14 \SetRowColor{white} \{\{br=1\}\}- genetic variation & \{\{br=1\}\}- forms of \seqsplit{reproduction} & - genetically identical \tn % Row Count 9 (+ 3) % Row 15 \SetRowColor{LightBackground} \{\{br=1\}\}- half \# chromosomes (23) & \{\{br=1\}\}- stage names & - same \# chromosomes (46) \tn % Row Count 12 (+ 3) % Row 16 \SetRowColor{white} \{\{br=1\}\}\{\{bb=1\}\}- sex cells/gametes & \{\{br=1\}\}\{\{bb=1\}\} & \{\{bb=1\}\}- somatic cells \tn % Row Count 15 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.36 cm} x{4.64 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Meiosis Definitions}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{- heredity:}} & transmission of traits from 1 generation to the next \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{- gametes:}} & haploid reproductive cells (egg/sperm) \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{- gene locus:}} & gene's specific location on the length of a chromosome \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} {\bf{- karyotype:}} & display of chromosomes matched up with their pairs (based on length) \tn % Row Count 11 (+ 3) % Row 4 \SetRowColor{LightBackground} {\bf{- homologous chromosomes:}} & pair of chromosomes that have the same length, stain pattern, and genes controlling the same characteristics \tn % Row Count 16 (+ 5) % Row 5 \SetRowColor{white} {\bf{- sex chromosome:}} & chromosome responsible for determining the sex of an individual \tn % Row Count 19 (+ 3) % Row 6 \SetRowColor{LightBackground} {\bf{- autosome:}} & chromosome NOT directly involved in determining sex \tn % Row Count 22 (+ 3) % Row 7 \SetRowColor{white} {\emph{- diploid cell\textasciitilde{}}} & 2 chromosome sets (2n) = 46; somatic cells \tn % Row Count 24 (+ 2) % Row 8 \SetRowColor{LightBackground} {\emph{- haploid cell\textasciitilde{}}} & 1 chromosome set (n) = 23; gametes \tn % Row Count 26 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Meiosis Background}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Meiosis I is called?} \tn \mymulticolumn{1}{x{8.4cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}↳ reductional division} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Meiosis II is called?} \tn \mymulticolumn{1}{x{8.4cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}↳ equational division} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Original source of all genetic diversity?} \tn \mymulticolumn{1}{x{8.4cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}↳ mutations} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Term for different version of a gene?} \tn \mymulticolumn{1}{x{8.4cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}↳ alleles} \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Variation}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/kmz-2022_1649791065_crossing over.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{- crosing over:}} genetic rearrangment between sister chromatids by exchanging corresponding segments of DNA \newline ↳ combining DNA from 2 parents into a single chromosome = {\emph{variation}} \newline {\bf{- independent assortment:}} each pair of homologous chromosomes are positioned independently of other pairs \newline ↳ each daughter cell represents 1 outcome -{}-{}- formula: 2\textasciicircum{}n\textasciicircum{} \newline {\bf{- random fertilization\textasciitilde{}}} \newline ↳ fusion of gametes (2\textasciicircum{}23\textasciicircum{} x 2\textasciicircum{}23\textasciicircum{}) = {\emph{variation}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.2 cm} x{4.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Genetics Definitions}} \tn % Row 0 \SetRowColor{LightBackground} {\emph{- blending hypothesis\textasciitilde{}}} & genetic material contributed by both parents mixes (like paint) \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\emph{- particulate hypothesis\textasciitilde{}}} & parents pass on genes that retain their separate identities in offspring (like deck of cards) \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} {\emph{- true-breeding strain\textasciitilde{}}} & plants, that after many generation of self-pollination, have produced only the same variety as the parent (homozygous) \tn % Row Count 12 (+ 5) % Row 3 \SetRowColor{white} {\bf{- hybridization:}} & crossing of 2 true-breeding varieties \tn % Row Count 14 (+ 2) % Row 4 \SetRowColor{LightBackground} {\bf{- P generation:}} & the true-breeding {\emph{parent}} individuals \tn % Row Count 16 (+ 2) % Row 5 \SetRowColor{white} {\bf{- F1 generation:}} & hybrid offspring arising from a parental cross {\emph{('first filial)}} \tn % Row Count 19 (+ 3) % Row 6 \SetRowColor{LightBackground} {\bf{- F2 generation:}} & offspring from the interbreeding of the F1 generation {\emph{(second filial)}} \tn % Row Count 22 (+ 3) % Row 7 \SetRowColor{white} {\bf{- homozygous:}} & 2 identical alleles \tn % Row Count 24 (+ 2) % Row 8 \SetRowColor{LightBackground} {\bf{- heterozygous:}} & 2 different alleles \tn % Row Count 26 (+ 2) % Row 9 \SetRowColor{white} {\bf{- phenotype:}} & physical/physiological traits \tn % Row Count 28 (+ 2) % Row 10 \SetRowColor{LightBackground} {\bf{- genotype:}} & genetic makeup/set of alleles \tn % Row Count 30 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.2 cm} x{4.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Genetics Definitions (cont)}} \tn % Row 11 \SetRowColor{LightBackground} {\bf{- testcross:}} & breeding an organism of unknown genotype w/ {\emph{homozygous recessive}} to determine the unknown genotype \tn % Row Count 5 (+ 5) % Row 12 \SetRowColor{white} {\bf{- monohybrid cross:}} & cross between 2 organisms that {\emph{heterozygous}} for the trait \tn % Row Count 8 (+ 3) % Row 13 \SetRowColor{LightBackground} {\bf{- dihybrid cross:}} & cross between 2 organisms that are {\emph{heterozygous}} for {\emph{both}} traits \tn % Row Count 11 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Mendel's 3 Laws}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/kmz-2022_1649792806_mendels laws.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Probability}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/kmz-2022_1649793490_probability.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{- multiplication rule of probability:}} probability of independent events occurring at the same time is the {\emph{product of their individual proababilties}} \newline {\bf{- addition rule of probability:}} probability of mutually exclusive events occurring is the {\emph{sum of their individual probabilities}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Incomplete Dominance}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/kmz-2022_1649793815_incomplete dominance.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{- incomplete dominance:}} phenotype between both parents \newline ↳ genotype isn't completely dominant \newline ↳ use capital letter with a superscript \newline ↳ C ➜ protein ➜ trait} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Codominance}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/kmz-2022_1649795159_codominance.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{- codominance:}} 2 alleles that each affect the phenotype in separate ways \newline ↳ use capital letter and superscript \newline ↳ R' ➜ protein ➜ item A ➜ red \newline ↳ R ➜ protein ➜ item B ➜ pink} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4.64 cm} x{3.36 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Blood Types}} \tn % Row 0 \SetRowColor{LightBackground} A & I\textasciicircum{}A\textasciicircum{}I\textasciicircum{}A\textasciicircum{}/I\textasciicircum{}A\textasciicircum{}i \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} B & I\textasciicircum{}B\textasciicircum{}I\textasciicircum{}B\textasciicircum{}/I\textasciicircum{}B\textasciicircum{}i \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} O & ii \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} AB & I\textasciicircum{}A\textasciicircum{}I\textasciicircum{}B\textasciicircum{} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} alleles present= & 3 \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} recessive allele= & O \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} codominant alleles= & A \& B \tn % Row Count 7 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Sex-linked Genes}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{- male =}} XY \newline % Row Count 1 (+ 1) {\bf{- female =}} XX \newline % Row Count 2 (+ 1) {\bf{- X inactivation:}} most of 1 X chromosome in each cell becomes inactivated \newline % Row Count 4 (+ 2) {\bf{- Barr bodies:}} inactive X chromosome condenses \newline % Row Count 6 (+ 2) {\bf{-gene SRY}} (sex-determining region of Y): Y gene results in a male \newline % Row Count 8 (+ 2) {\bf{↳}} makes transcription factor that binds to other genes causing them to transcribe \newline % Row Count 10 (+ 2) {\bf{- sex-linked genes:}} genes on sex chromosomes \newline % Row Count 11 (+ 1) {\bf{-}} father passes Y to sons \& X to daughters \newline % Row Count 12 (+ 1) {\bf{-}} mother passes X to sons/daughters \newline % Row Count 13 (+ 1) {\bf{- sex determination in birds:}} \newline % Row Count 14 (+ 1) ↳ sex chromosome in {\emph{egg}} \newline % Row Count 15 (+ 1) ↳ {\emph{male =}} ZZ \newline % Row Count 16 (+ 1) ↳ {\emph{female =}} ZW% Row Count 17 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Pedigree Chart}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/kmz-2022_1649795638_pedigree.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Chromosomal Mutations}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/kmz-2022_1649880348_chromosomal mutations.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{- large scale chromosomal mutation = {\emph{change in phenotype}} \newline {\emph{- three possible causes of mutations:}} \newline 1. physical/chemical disturbances \newline 2. errors during meiosis \newline 3. random mutation} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.52 cm} x{4.48 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Chromosomal Disorders}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{- nondisjunction:}} & pair of homologous chromosomes/sister chromatids fail to separate \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{- aneuploidy:}} & 1 or more chromosomes have extra copies/deficient number \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} {\bf{- monosomic}} (monosomy){\bf{:}} & diploid cell that has {\emph{1 copy}} of a chromosome (not 2) \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} {\bf{- trisomic}} (trisomy){\bf{:}} & diploid cell that has {\emph{3 copies}} of a chromosome (not 2) \tn % Row Count 12 (+ 3) % Row 4 \SetRowColor{LightBackground} {\bf{- polyploidy:}} & organism has more than {\emph{2 complete chromosome sets}} \tn % Row Count 15 (+ 3) % Row 5 \SetRowColor{white} \{\{bt=2\}\}{\bf{- Down syndrome:}} & \{\{bt=2\}\}extra chromosome 21 (trisomy) \tn % Row Count 17 (+ 2) % Row 6 \SetRowColor{LightBackground} {\bf{- Klinefelter syndrome:}} & extra X chromosome in males (XXY) \tn % Row Count 19 (+ 2) % Row 7 \SetRowColor{white} {\bf{- Turner syndrome:}} & loss of X chromosome in females (X0) \tn % Row Count 21 (+ 2) % Row 8 \SetRowColor{LightBackground} {\bf{- XXY:}} & extra Y chromosome in males \tn % Row Count 23 (+ 2) % Row 9 \SetRowColor{white} {\bf{- XXX:}} & extra X chromosome in females \tn % Row Count 25 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Genomic Imprints}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{genomic imprints:}}} \tn \mymulticolumn{1}{x{8.4cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}expression of an allele in offspring depends on whether the allele is inherited from mother/father} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\emph{When does it occur?}}} \tn \mymulticolumn{1}{x{8.4cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}during gamete formation} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\emph{What chemical change does it involve?}}} \tn \mymulticolumn{1}{x{8.4cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}methyl group added to cytosine nucleotides (inactivates alleles)} \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\emph{Which organelles contain their own DNA?}}} \tn \mymulticolumn{1}{x{8.4cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}mitochondria \& chloroplasts} \tn % Row Count 11 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\emph{When do these organelles get passes to offspring?}}} \tn \mymulticolumn{1}{x{8.4cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}during fertilization, mitochondrial DNA from mother} \tn % Row Count 15 (+ 4) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\emph{Why are genetic defects of mitochondrial genes likely to affect the functioning of the nervous/muscular system?}}} \tn \mymulticolumn{1}{x{8.4cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}they are the most susceptible to energy deprivation (which ATP comes from mitochondria)} \tn % Row Count 20 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Linkage Group}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/kmz-2022_1649884340_linkage groups practice.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{- linkage group:}} all the loci that "move together" in inheritance \newline {\bf{- frequency of recombination:}} the frequency that crossing over will occur between two genes \newline {\bf{- gene map:}} chromosome map that shows the relative locations of genes \newline {\bf{- linked genes:}} located close enough together on a chromosome that they tend to be inherited together \newline {\bf{- 'wild type':}} phenotype most commonly observed} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}