AP Biology: Unit 4 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31597/

Cell Signals

1. Direct Contact

<i>५ plasmo-</i> desmata of plants∼	open channels through the cell wall connecting adjacent cells allowing substances to pass between	
<i> </i>	interaction between molecules protruding from their surfaces (immune cells)	
2. Local Signaling		
<i> </i>	secreting cell acts on nearby target cells by discha- rging growth factor molecules	
<i> </i>	nerve cells release neurotransmitter molecules into synapse	
3. Long Distance		
<i> → animal</i> hormones~	cells secrete hormones into body fluids to target cell	
<i> </i>	hormones move through the cells (by xylem) or diffuse through the air as a gas	

Step 1: Reception

- ligand:	molecule that binds specifically to another molecule	
- plasma membrane receptors:	transmit information from extracellular environment to inside of the cell by changing shape or aggregating when a ligand binds	
ь cell surface receptors∼	1. G protein-coupled receptors (GPCRs)	
	2. receptor tyrosine kinases (RTK)	

3. ligand gates ion channels

G Protein-Coupled Receptor (GPCR)

- *function/activity:* 1. embryonic development 2. sensory reception (smell, vision, etc.)

GPCR Sequence

binds to inactive G protein = GTP to replace GDP (activating G protein)

- G protein binds to an enzyme (change in shape/activity)
- → G protein inactivates by hydrolyzing bound GATP to GDP

Receptor Tyrosine Kinases (RTK)

- kinase: enzyme that catalyzes the transfer of phosphate groups
- differs from GPCR by triggering many pathways

RTK Sequence

- 4 binding of signal causes 2 receptor monomers to come together = dimer
- 4 tyrosine kinase region activated by ATP (adds a phosphate group)
- 4 proteins bind (change shape) & activates protein
- transduction/response triggered

С

By kmz_2022

cheatography.com/kmz-2022/

Not published yet. Last updated 11th April, 2022. Page 1 of 5.

AP Biology: Unit 4 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31597/

Cheatography

Ligand Gated Ion Channels

- for larger/hydrophilic molecules

- can be controlled by electrical conditions -- voltage-gated ion channels

Ligand Channel Sequence

- → signal molecule causes receptor gate to open/close

Intracellular Receptor Proteins

2 areas present~	cytoplasm
	nucleus of target cells
3 signal molecule types~	1. steroid hormones
	2. thyroid hormones
	3. nitric oxide

- once receptor protein is activated the signal molecules enter the nucleus and turn on specific genes

Step 2: Transduction

molecular interactions relay signals from receptors to target molecules in the cell

	ex) phosphorylation cascade; second messengers
- signal amplification:	molecules in a pathway transmit the signal to many molecules at the next step
 advantage of multistep pathway responses~ 	more coordination & regulation (fine tuning of response)

Protein Phosphorylation

 protein phosphatases: enzymes that remove phosphate groups (dephosphorylation)

acts as a molecular switch to turn activities on/off or up/down
 Phosphorylation Sequence

 → a molecules receive phosphate group from ATP (serine & threonine) = phosphorylation

Second Messengers

- second messenger: small, nonprotein, water-soluble molecule/ion

in transduction pathways

ex) cAMP, Ca²⁺

- *cAMP* level rise when epinephrine binds to liver membrane receptors

Gausing a break down of glucose
 Gausing a break down
 Gausing a break
 Gaus

- └→ levels go back down from phosphodiesterase (cAMP to AMP)
- 3 possible responses to calcium =
- 4 calcium released from ER when signal molecule (IP3) binds to cell

By kmz_2022 cheatography.com/kmz-2022/ Not published yet. Last updated 11th April, 2022. Page 2 of 5.

AP Biology: Unit 4 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31597/

Cell Cycle Background

- what two organism have

cell division the same as

- what are the roles of cell

- how do the genomes of

prokaryotes & eukaryotes

reproduction?

division?

differ?

- somatic cell:

- mitosis:

- cytokinesis:

- centromeres

- centrioles

- binary fission:

- origin of replication:

- sister chromosome:

Step 3: Response

- cell signaling leads to *regulation of transcription*/cytoplasmic activities

- many pathways *regulate protein synthesis* by turning specific genes on/off

4 FINE TUNING RESPONSE

1. signal amplification~	# of activated products gets increasingly bigger
	proteins process many molecules
2. specificity of signaling & coordi- nation of response~	different kinds of cells have different collections of proteins (diff. responses from same signal)
3. efficiency~	<i>scaffolding proteins:</i> large relay proteins w/ several relay proteins attached
	creates more than one pathway
4. termination of signal~	reverse change from prior signal to receive new one
	by dephosphorization of relay proteins

Apoptosis

" programmed cell death"

- general process~
- → DNA chopped up & organelles fragmented
- $\, {\scriptstyle \triangleright} \,$ cell shrinks & becomes lobe shaped
- Gell parts engulfed & digested by scavenger cells
- processes this is needed for~
- 1. development of nervous system
- 2. operation of immune system
- 3. morphogenesis of hands/feet/paws

By kmz_2022 cheatography.com/kmz-2022/ Not published yet. Last updated 11th April, 2022. Page 3 of 5. Sponsored by **Readable.com** Measure your website readability!

molecule begins

1. prokaryotes 2. unicellular

Growth, repair, reproduction, &

larger; linear DNA; lots of non-

▹ prokaryotes~ single DNA molecule; smaller; looped DNA;

any cell in an organism except reproductive cells (body cells) 2 copies of a duplicated

chromosome attached at the

process of nuclear division (P, PM,

division of the cytoplasm to form 2

produce microtubules (in plants &

microtubules that spindle fibers

asexual reproduction by "division in half" (prokaryotes & unicellular

attach to (in animals only)

site where replication of DNA

separate daughter cells

eukaryotes∼ # of DNA molecules;

eukaryotes

replacement

coding DNA

centromere

M, A, T)

animals)

eukaryotes)

more coding DNA

https://readable.com

Cell Cycle Background (cont)

AP Biology: Unit 4 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31597/

G1 Checkpoint

nt cell stop dividing when in contact with one another		
nd- cell must attach to a substance in order to divide	M	
n	G2 G1 Check fori Check	
interphase~	 - a.k.a. 'restriction point' • if gets go-ahead signal continues on to divide • if doesn't get go-ahead signal exits cycle/goes into G0 phase 	
cell growth	(nondividing)	
DNA replication	G2 Checkpoint	
cell components double (prep to divide)	Degraded Colling Colling Colling	
division~	degraded MPF Cyclin	
divide frequently		
divide when needed	- protein kinases: give go-ahead signal at G1 & G2 checkpoints	
don't divide at all	 - cyclins: attach to kinases to make them active - cyclin-dependent kinases (cdk) & cyclin combine to formMPF (maturation-promoting factors) 	
ints~	MPF formation occurs when cyclin accumulates = mitosis initiated	
	Here was started with the start of the start	
	be reused)	
	Metaphase Checkpoint	
made by platelets to help heal wounds		
PDGF bind to membrane receptor → transduction pathway triggered → cell passes G1 checkpoint → cell division	No contraction of the second s	
	one another nd- cell must attach to a substance in order to divide	

- anaphase won't begin until *chromosomes are properly attached to spindles*

By kmz_2022 cheatography.com/kmz-2022/

Not published yet. Last updated 11th April, 2022. Page 4 of 5.

AP Biology: Unit 4 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31597/

Cancer	
- cancer cells are a change in 1+ genes that result in	faulty cell cycle control
- normal cell cycle amount =	20-50 times
- cancer cell cycle amount =	continuous
- benign tumor:	cells that are NOT capable of surviving at a new site (slow growing; small; localized)
- malignant tumor:	cancerous tumor capable of surviving in a new site (fast growing; large; invasive)
- metastasis:	the spread of cancer cells to a different location from the original site

By kmz_2022 cheatography.com/kmz-2022/ Not published yet. Last updated 11th April, 2022. Page 5 of 5.