AP Biology: Unit 4 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31597/

Cell Signals

1. Direct Contact

<i>⊾ plasmo-</i> <i>desmata of</i> <i>plants~</i>	open channels through the cell wall connecting adjacent cells allowing substances to pass between	
↓ cell-cell recognition~	interaction between molecules protruding from their surfaces (immune cells)	
2. Local Signaling		
<i> ⊳ paracrine</i> signaling~	secreting cell acts on nearby target cells by discha- rging growth factor molecules	
<i> </i>	nerve cells release neurotransmitter molecules into synapse	
3. Long Distance		
<i>⊾ animal</i> hormones~	cells secrete hormones into body fluids to target cell	
<i> </i>	hormones move through the cells (by xylem) or	

hormones~ diffuse through the air as a gas

Step 1: Reception

- ligand:	molecule that binds specifically to another molecule	
- plasma membrane receptors:	transmit information from extracellular environment to inside of the cell by changing shape or aggregating when a ligand binds	
 ↓ cell surface receptors~ 	1. G protein-coupled receptors (GPCRs)	
	2. receptor tyrosine kinases (RTK)	

3. ligand gates ion channels

G Protein-Coupled Receptor (GPCR)

- *function/activity:* 1. embryonic development 2. sensory reception (smell, vision, etc.)

GPCR Sequence

- binds to inactive G protein = GTP to replace GDP (activating G protein)
- G protein binds to an enzyme (change in shape/activity)
- → G protein inactivates by hydrolyzing bound GATP to GDP

Receptor Tyrosine Kinases (RTK)

- kinase: enzyme that catalyzes the transfer of phosphate groups
- differs from GPCR by triggering many pathways
- *RTK Sequence*
- 4 binding of signal causes 2 receptor monomers to come together = dimer
- *↓ tyrosine kinase region activated by ATP (adds a phosphate group)*
- b proteins bind (change shape) & activates protein

C

By kmz_2022 cheatography.com/kmz-2022/ Not published yet. Last updated 11th April, 2022. Page 1 of 5.

AP Biology: Unit 4 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31597/

Cheatography

Ligand Gated Ion Channels

- for larger/hydrophilic molecules

- can be controlled by electrical conditions -- voltage-gated ion channels

Ligand Channel Sequence

- → signal molecule causes receptor gate to open/close
- \rightarrow ions flow through (NA⁺ or Ca⁺)

Intracellular Receptor Proteins

cytoplasm
nucleus of target cells
1. steroid hormones
2. thyroid hormones
3. nitric oxide

- once receptor protein is activated the signal molecules enter the nucleus and turn on specific genes

Step 2: Transduction

molecular interactions relay signals from receptors to target molecules in the cell

	ex) phosphorylation cascade; second
	messengers
- signal amplification:	molecules in a pathway transmit the signal to many molecules at the next step
 advantage of multistep pathway responses~ 	more coordination & regulation (fine tuning of response)

Protein Phosphorylation

- protein phosphatases: enzymes that remove phosphate groups (dephosphorylation)

- acts as a molecular switch to turn activities on/off or up/down *Phosphorylation Sequence*

threonine) = phosphorylation

- hext molecule is activated in the pathway

Second Messengers

- second messenger: small, nonprotein, water-soluble molecule/ion

in transduction pathways

ex) cAMP, Ca2+

- cAMP level rise when epinephrine binds to liver membrane receptors

- Gausing a break down of glucose
 Gausing a break
 Gausing a break down of glucose
 Gausing a break
 Gausi
- └→ levels go back down from phosphodiesterase (cAMP to AMP)
- 3 possible responses to calcium =
- 4 1. muscle cell contration 2. secretion of substances 3. cell division
- └→ calcium released from ER when signal molecule (IP3) binds to cell

By kmz_2022 cheatography.com/kmz-2022/ Not published yet. Last updated 11th April, 2022. Page 2 of 5.

AP Biology: Unit 4 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31597/

Step 3: Response

- cell signaling leads to *regulation of transcription*/cytoplasmic activities

- many pathways *regulate protein synthesis* by turning specific genes on/off

4 FINE TUNING RESPONSE

1. signal amplification~	# of activated products gets increasingly bigger
	proteins process many molecules
2. specificity of signaling & coordi- nation of response~	different kinds of cells have different collections of proteins (diff. responses from same signal)
3. efficiency~	<i>scaffolding proteins:</i> large relay proteins w/ several relay proteins attached
	creates more than one pathway
4. termination of signal~	reverse change from prior signal to receive new one
	by dephosphorization of relay proteins

Apoptosis

" programmed cell death"

- general process~
- → DNA chopped up & organelles fragmented
- Gell shrinks & becomes lobe shaped
- Gell's parts are packaged into vesicles
- processes this is needed for~
- 1. development of nervous system
- 2. operation of immune system
- 3. morphogenesis of hands/feet/paws

By kmz_2022 cheatography.com/kmz-2022/ Not published yet. Last updated 11th April, 2022. Page 3 of 5. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Cell Cycle Background

- what two organism have cell division the same as reproduction?	1. prokaryotes 2. unicellular eukaryotes
- what are the roles of cell division?	Growth, repair, reproduction, & replacement
 how do the genomes of prokaryotes & eukaryotes differ? 	 ukaryotes~ # of DNA molecules; larger; linear DNA; lots of non- coding DNA
	 prokaryotes~ single DNA molecule; smaller; looped DNA; more coding DNA
- somatic cell:	any cell in an organism except reproductive cells (body cells)
- sister chromosome:	2 copies of a duplicated chromosome attached at the centromere
- mitosis:	process of nuclear division (P, PM, M, A, T)
- cytokinesis:	division of the cytoplasm to form 2 separate daughter cells
- centromeres	produce microtubules (in plants & animals)
- centrioles	microtubules that spindle fibers attach to (in animals only)
- binary fission:	asexual reproduction by "division in half" (prokaryotes & unicellular eukaryotes)
- origin of replication:	site where replication of DNA molecule begins

Cell Cycle Background (cont)

AP Biology: Unit 4 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31597/

G1 Checkpoint

- density-depende inhibition: - anchorage depe ence:	ent cell stop dividing when in contact with one another end- cell must attach to a substance in order to divide	G2 G1 Checkpoint Check for:	
Cell Cycle Diagra	III	S (DNA synthesis) S (DNA synthesis) Resting state (G0)	
		- a.k.a. 'restriction point'	
Interphase		 if gets go-ahead signal continues on to divide if doesn't get go-ahead signal exits cycle/goes into G0 phase 	
- 3 sub phases of	rinterphase~	(nondividing)	
⊊ G1 phase (first gap)=	cell growth	G2 Checkpoint	
<i> Sphase</i> (synthesis)=	DNA replication		
G2 phase (second gap)=	cell components double (prep to divide)	Deprated Cork	
- different rates of	f division~	Gegrade Verlin is	
→ skin cells =	divide frequently		
<i>⊾liver cells =</i>	divide when needed	 protein kinases: give go-ahead signal at G1 & G2 checkpoints cyclins: attach to kinases to make them active 	
<i>५ nerve/muscle cells =</i>	don't divide at all	cyclin-dependent kinases (cdk) & cyclin combine to formMPF (maturation-promoting factors)	
- 3 major checkpo	pints~	MPF formation occurs when cyclin accumulates = mitosis initiated	
1. G1		• MPF breaks down during anaphase (cyclin destroyed; cdk stays to	
2. G 2		be reused)	
3. Metaphase		Metaphase Checkpoint	
- platelet derived growth factor (PDGF):	made by platelets to help heal wounds		
	PDGF bind to membrane receptor \rightarrow transduction pathway triggered \rightarrow cell passes G1 checkpoint \rightarrow cell division	No contraction of the second s	

- anaphase won't begin until *chromosomes are properly attached to spindles*

By kmz_2022 cheatography.com/kmz-2022/ Not published yet. Last updated 11th April, 2022. Page 4 of 5.

AP Biology: Unit 4 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31597/

Cancer	
- cancer cells are a change in 1+ genes that result in	faulty cell cycle control
- normal cell cycle amount =	20-50 times
- cancer cell cycle amount =	continuous
- benign tumor:	cells that are NOT capable of surviving at a new site (slow growing; small; localized)
- malignant tumor:	cancerous tumor capable of surviving in a new site (fast growing; large; invasive)
- metastasis:	the spread of cancer cells to a different location from the original site

С

By kmz_2022 cheatography.com/kmz-2022/ Not published yet. Last updated 11th April, 2022. Page 5 of 5.