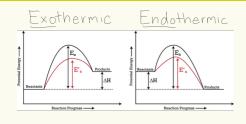


AP Biology: Unit 3 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31574/

Enzymes


- enzyme: macromolecule that acts as a biological catalyst to speed up reactions by lowering $\mathsf{E} \mathtt{A}$
- substrate: molecule that can interact with an enzyme
- active site: spot to specially interact with the substrate
- cofactor: non-protein bound to the active site to allow for the substrate to properly bind
- coenzyme: organic molecule serving as a cofactor
- *enzymes are reusable*

Enzyme Lowers Activation Energy

1. Proper Alignment~	active site allows place for reactants (substrates) to come together
2. Pulls Reactants~	breaks chemical bonds before reaction
3. More Conducive~	chemical/physical properties better than those in surrounding environment
4. Form Temporary Bonds~	amino acids in active site bond with the substrate molecule

- catalyze either the forward or reverse reaction --- depends on the concentration of reactants/products

Enzyme Reaction Graphs

Enzyme Structure - same as structure of primary, secondary, tertiary, & proteins: quaternary - shape denatures at... 1. high temperature~ (thermal agitation) bonds disrupted ideal at: 35-40 degrees graph: wide parabola (too acidic) hydrogen bonds disrupted 2. low pH~ ideal at: graph: steep parabola (log scale) determine rate of collision (3.) substrate concentration~ below saturation level ideal at: graph: logistic growth (levels off)

Enzyme Activity

Litzyille Activity			
- competitive inhibitors:	enter the active site in place of the substrate		
- noncompet- itive inhibi- tors:	bind to a location that isn't the active site (allosteric site), change enzyme shape, & block substrate		
- allosteric regulation:	binding of a regulatory molecule at a site that affects the function at a different site		
	ex) allosteric deactivation & allosteric activation		
- feedback inhibition:	end product of metabolic pathway acts as an inhibitor of an enzyme within the pathway		

By kmz_2022 cheatography.com/kmz-2022/

Not published yet. Last updated 11th April, 2022. Page 1 of 6.

AP Biology: Unit 3 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31574/

ATP Background		Energy (d
main 3 kinds of work performed:	1. chemical work- start reactions	- 1st Law Thermod
	2. transport work- moving substances	
	3. mechanical work- movement of cilia, contract muscles, etc.	2nd Law
ATP synthesis 2 ways:	1. substrate level phosphorylation	Thermod
	→ phosphate group removed from substrate & added to ADP to form ATP	
	2. chemiosmosis (electron transport chain)	Free Ene
		- free ene (∆G):
- uncouplers:	chemical in liquid membrane that moves H ⁺	
· · · · · · · · · · · · · · · · · · ·	across the membrane (blocks ATP synthesis)	

Energy	
- metabolic pathway:	series of chemical reactions that has a starting molecule and results in a product
- catabolic pathway:	pathway that breaks down complex molecules/polymers into simpler molecules/monomers (releases energy)
- anabolic pathway:	pathway that uses simple molecules/monomers to form complex molecules/polymers (consumes energy)

Energy (cont)				
- 1st Law of Thermodynamic	st Law of conservation of energy ermodynamics~			
	0,			
2nd Law of Thermodynamic	increases entropy/disorder (heat)			
Free Energy				
- free energy (∆G):	portion of a syst	em's energy tha	t can perform work	
	must be <i>nega</i>	ntive for reaction	to be spontaneous	
	→ must be negationgravitational position	solutes in solvent	to be spontaneous molecules (size & #)	
higher ∆G	gravitational	solutes in	molecules (size	
higher ΔG lower ΔG	gravitational position	solutes in solvent	molecules (size & #)	
	gravitational position high altitude	solutes in solvent clustered	molecules (size & #) large, few	

By kmz_2022 cheatography.com/kmz-2022/

Not published yet. Last updated 11th April, 2022. Page 2 of 6.

AP Biology: Unit 3 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31574/

Free Energy (cont)			
exergonic reaction:	spontaneous reaction with a net release of free energy	- ∆G	cellular respir- ation
endergonic reaction:	nonspontaneous reaction with free energy absorbed	+ ∆G	photos- ynthesis

Photosynthesis Background	
equation:	6CO2+6H2O (+energy) → C6H12O6+6O2
two processes:	light dependent reaction (light reaction)
	2. light independent reaction (dark reaction)
light reaction	dark reaction
- pigments trap light energy to transform into chemical energy	-forms glucose from CO ₂ , ATP, & NADPH ⁺
- breaks down H2O to release O2 (2H 2O → O2+4H ⁺ +4e-)	- light energy stored in bonds of glucose
- produces ATP from ADP	
- unites H ⁺ with NADPH ⁺	

Chi	oron	loot	Cterry	oturo
CIII	orop	ıası	Suu	cture

- light & dark reactions occur in chloroplasts
- inner membrane organized into structures that photosynthesis reactions are located

riginents	
pigments absorb certain light wavelengths and reflect others	

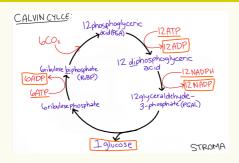
⇒ blue/violet: shortest & more energy
 → red: longest & less energy

- chlorophyll appears green due to reflecting green and absorbing
- chlorophyll has at least 5 forms that

vary:	
Chlorophyll type~	Found in~
1. Chl. A	all plants & algae
2. Chl B	all plants & green algae
3. Chl. C	brown algae
4. Chl. D	red algae
5. bacteriochlorophyll	some bacteria
- accessory pigments trap light	(increase the amount of
wavelengths different from chlorophyll	light used)
carotenoids~	phycobilin~
	in red algae & blue-
	green bacteria
→ yellow, brown, orange colors	
	green light
	→ allow red algae to live
	deeper than other types

Light Dependent Reaction

- scaffolds to reaction center → chlorophyll molecules → excited element e- (higher energy level) → e- out of photosystem II
- H2O breakdown only PS II
- 2e- replaces lost e- in PS II
- e- lost by PS I is replaced by e- from PS II
- ETC taking steps to keep releasing energy for \boldsymbol{H}^{+} to pass through
- products: O2, NADPH, & ATP


Not published yet. Last updated 11th April, 2022. Page 3 of 6.

AP Biology: Unit 3 Cheat Sheet

by kmz_2022 via cheatography.com/145729/cs/31574/

Light Independent Reaction

- RuBP carboxylase:*
- → a.k.a. rubisco
- → 6 diphosphate (6C) -- split in half -- 12 phosphate (3C)
- ATP equivalents:
- → 18 ATP (total) = 18 (1 each)
- → 12 NADPH = 36 (3 each)
- → TOTAL = 54 ATP used
- ADP & NADPH used from light dependent reaction
- products: ADP, NADP, & glucose

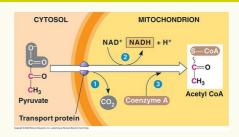
Cellular Respiration Background

equation: $C6H12O6+6O2 \rightarrow 6H2O+6CO2$ (+energy)

three stages (w/ O2): 1. glycolysis

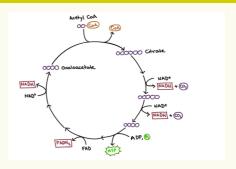
(pyruvate processing)

2. krebs cycle

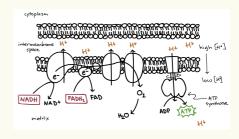

3. electron transport chain

two stages (w/o O2): 1. gylcolysis

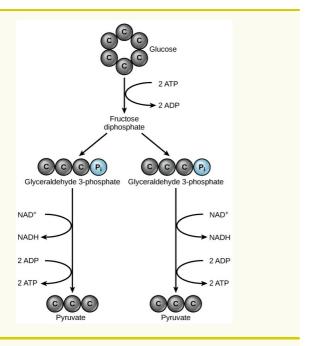
2. fermentation


Glycolysis

Pyruvate Processing


- * occurs twice (once per pyruvate)
- location: mitochondria
- reactants: pyruvic acid, NAD⁺, & coenzyme A
- products: CO2, NADH, & aceytyl CoA

Krebs Cycle

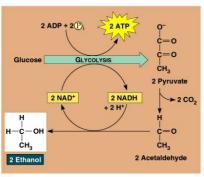


- * occurs twice
- * a.k.a. citric acid cycle
- location: mitochondria
- **- reactants: pyruvic acid, FAD, NAD+, & ADP
- products: CO2, NADH, FADH2, & ATP

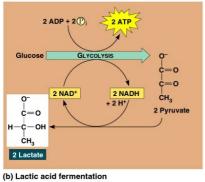
Electron Transport Chain

- * occurs constantly
- * a.k.a. oxidative phosphorylation
- e- from NADH & FADH2 passed along chain = release energy every step
- H⁺ moves through channel (energy released)
- → ADP+P → ATP
- e- combine with O = O2
- 4 O2+ 2H⁺ → 2H2O
- makes 32 ATP from 1 glucose
- location: inner membrane of mitochondria
- reactants: NADH, FADH2, O2, & ADP
- products: ATP, H2O, NAD, & FAD

- * occurs once
- * all cells do this
- * does NOT require O2
- location: cytoplasm
- reactants: glucose, 2 ATP, 2 NAD+, & 4 ADP
- products: 2 pyruvic acids, 2 NADH, & 4 ATP (net gain 2)


By kmz_2022 cheatography.com/kmz-2022/

Not published yet. Last updated 11th April, 2022. Page 4 of 6.



AP Biology: Unit 3 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31574/

Fermentation

(a) Alcohol fermentation

- * NO O2
- * a.k.a. anaerobic cellular respiration
- * no ATP production
- * recycles NAD for glycolysis
- location: cytoplasm

Alcoholic Fermentation

- reaction: pyruvic acid+NADH → ethanol+CO2+NAD

Lactic Acid Fermentation

- reaction: pyruvic acid+NADH → lactic acid +NAD

By kmz_2022 cheatography.com/kmz-2022/ Not published yet. Last updated 11th April, 2022. Page 5 of 6.