Cheatography

AP Biology: Unit 1 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31430/

Water Molecule

- 1:2 ratio (oxygen to hydrogen)
- oxygen end (-) & hydrogen end (+)

Water Structure/Hydrogen Bonding

cohesion:	2 of the SAME molecules hydrogen bonding
adhesion:	2 DIFFERENT molecules hydrogen bonding
surface tension	strong hydrogen bonds between water molecules
capillary action	results from cohesion and adhesion (ex. water up roots)
high solvency due	adhesive property

Elements of Life

macromolecule	Carbon (C)	Nitrogen (N)	Phosphorus (P)
carbohydrate~	\checkmark		
protein~	\checkmark	1	
nucleic acid	√	1	1
lipid	1		√*
* only in phospholipids			

Macromolecule chart

Forming/Breaking Down Macromolecules

Functional Groups

*Carbonyl ketone~ C=O within skeleton *Carbonyl aldehyde~ C=O & C-H at the end of skeleton

С

By kmz_2022

cheatography.com/kmz-2022/

Not published yet. Last updated 4th April, 2022. Page 1 of 4. Sponsored by **Readable.com** Measure your website readability! https://readable.com

Cheatography

Carbohydrate Structure

-OH on bottom (right)

-OH on top (right)

energy storage

energy storage

energy storage

purpose

(starch)

(starch)

(starch)

structural

support

alpha

beta

glucose

glucose

amylose

amylop-

glycogen

ectin

chitin

AP Biology: Unit 1 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31430/

Intro to Macromolecules			
monomer	→	polymer	(formed by covalent bonds)
	monomer		polymer
carboh- ydrate	monosacch- aride	disacc- haride	polysaccharide
protein	amino acid	dipeptide	polypeptide
nucleic acid	nucleotide	dinucl- eotide	polynucleotide
lipid	fatty acid		triglyceride

where

plants

plants

animals

animals

(fungi)

bond(s)

alpha 1-4

(branched)

(branched)

alpha 1-4; alpha 1-6

alpha 1-4; alpha 1-6

beta 1-4; H bonds

Carbohydrate Structure (cont)			
cellulose	structural support	plants	beta 1-4; H bonds
# of carbons	group name	formula	examples
3	triose	C3H6O3	glyceraldehyde
5	pentose	C 5 H 10 O 5	ribose; ribulose
6	hexose	C6H12O6	glucose; fructose; galactose

Protein Structure

*tertiary and quaternary interact through "R" groups (disulfide bridges, hydrogen bonds, hydrophobic interactions, & ionic bonding)

- change in structure/shape = change in function
- 8 functions:

Enzymes; Defense; Storage; Transport; Hormones; Structure; Receptor; Contractile

(Every Dragon Steals Treasures Hiding Secretively 'Round Castles)

By kmz_2022

cheatography.com/kmz-2022/

Not published yet. Last updated 4th April, 2022. Page 2 of 4. Sponsored by **Readable.com** Measure your website readability! https://readable.com

Cheatography

AP Biology: Unit 1 Cheat Sheet by kmz_2022 via cheatography.com/145729/cs/31430/

Nucleic Acid Structure

3' hydroxyl end	5' phosphate end
nucleotide monomers connected by	covalent bond
adenine & guanine	purines (2 rings)
cytosine & thymine	pyrimidines (1 ring)
A - T	held together by 2 hydrogen bonds
G - C	held together by 3 hydrogen bonds
DNA~	deoxyribose, thymine, double-st- randed (antiparallel)
RNA~	ribose, uracil, single-stranded

Lipid Structure

function:	energy storage and structural support
saturated fatty acid	solid at room temp., single bonds, straight
unsaturated fatty acid	liquid at room temp., 1+ double bond, bent
triglyceride~	glycerol with 3 fatty acids
phospholipid~	glycerol with 2 fatty acids & phosphate group
examples)	fats, oils, waxes, and steroids

Phospholipid

Isomers

- isomer: compounds that have the *same number of atoms* of the same elements but *different structures*/properties

- structural isomers: *differ* in the covalent *arrangements of their atoms*

- cis-trans isomers: covalent bonds to the same atoms, but *differ in their spacial arrangements*

(cis = atom on same side trans = atom on different sides)

- enantiomers: mirror images of each other and differ in shape

С

By kmz_2022 cheatography.com/kmz-2022/ Not published yet. Last updated 4th April, 2022. Page 3 of 4. Sponsored by Readable.com Measure your website readability! https://readable.com