

DatabaseSystems Cheat Sheet by kmuhle via cheatography.com/210901/cs/45584/

Relational Algebra								
Relational Algebra	English	Explanation	SQL	Example				
π _L (R)	Projection of R on L	Retrieves only column L from table R, removing duplicates.	SELECT DISTINCT L FROM R;	If R has columns (ID, Name, Age) and data {(1, Alice, 25), (2, Bob, 30)}, then π _{Name} (R) returns {Alice, Bob}.				
σ _C (R)	Selection (Filter) of R by condition C	Retrieves rows that satisfy condition C.	SELECT DISTINCT * FROM R WHERE C;	If R has {(1, Alice, 25), (2, Bob, 30)} and C is Age > 25, then σ _{age} >25(R) returns {(2, Bob, 30)}.				
ρg(R)	Renaming R as S	Renames relation R to S for easier reference.	R AS S	If R contains $\{(1, Alice), (2, Bob)\}$, then $\rho_T(R)$ treats it as T with the same data.				
$R\bowtie S$	Natural Join of R and S	Joins R and S on common attributes.	R NATURAL JOIN S (or, as SELECT) SELECT DISTINCT * from R NATURAL JOIN S;	If R = {(1, Alice), (2, Bob)} and S = {(1, NYC), (2, LA)}, R ⋈ S = {(1, Alice, NYC), (2, Bob, LA)}.				
R ⋈ _θ S	Theta Join of R and S on condition θ	Joins R and S where θ holds.	R INNER JOIN S SELECT DISTINCT * from R INNER JOIN S ON θ ; SELECT DISTINCT * FROM R, S WHERE θ	If R has {(1, Alice), (2, Bob)} and S has {(1, NYC), (3, LA)}, then with θ: R.ID = S.ID, the result is {(1, Alice, NYC)}.				
R⊗S	Cartesian Product of R and S	Pairs every row of R with every row of S.	SELECT DISTINCT * FROM R, S;	If R = $\{(1, Alice)\}$ and S = $\{(NYC),$ $(LA)\}$, then R \otimes S = $\{(1, Alice, NYC), (1,$ $Alice, LA)\}$.				

Operations							
Operation	Symbol	Meaning	Example				
Union	RuS	Rows in either R or S	If R = $\{A, B, C\}$ and S = $\{B, C, D\}$, then R \cup S = $\{A, B, C, D\}$.				
Inters- ection	RnS	Rows in both R and S	If R = {A, B, C} and S = {B, C, D}, then R \cap S = {B, C}.				
Difference	R-S	Rows in R that are not in S	If $R = \{A, B, C\}$ and $S = \{B, C, D\}$, then $R - S = \{A\}$.				

Common SQL Types					
Data Type	Description	Example			
VARCHAR(n)	A text string.	'hello'			
INTEGER	A whole number.	42			
FLOAT	A floating point number.	9.7			
NUMERIC (m, n)	A number with m digits, with n after the decimal point.	190.14 (E.g. mondey w/ NUMERIC(3,2))			
DATE	A date in the calendar.	'2020-09-01'			
TIME	A time of day.	'11:25:00'			
TIMESTAMP	Both a date and a time.	'2020-09-01T 11:25:00'			
CHAR(n)	Fixed-length string of length n.	'02155' (E.g. zip codes w/ CHAR(5))			

Closures

The *closure* of a set of attributes X - denoted as X^+ - is the set of attributes determined by X according to a given set of FDs F

The Closure Algorithm:

- Start by setting X⁺ to X .
- Repeat:
 - Choose an FD L -> R where $L \subseteq X^{+}$.
 - Add R to X⁺.
 - Record L -> R as having been used.
- Until there are no usable FDs left unused.

By **kmuhle** cheatography.com/kmuhle/

Not published yet. Last updated 8th February, 2025. Page 2 of 2. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish
Yours!
https://apollopad.com