Cheatography

DatabaseSystems Cheat Sheet by kmuhle via cheatography.com/210901/cs/45584/

Relational Algebra								
Relational Algebra	English	Explanation	SQL	Example				
πL(R)	Projection of R on L	Retrieves only column L from table R, removing duplicates.	SELECT DISTINCT L FROM R;	If R has columns (ID, Name, Age) and data {(1, Alice, 25), (2, Bob, 30)}, then π _{Name} (R) returns {Alice, Bob}.				
σ _C (R)	Selection (Filter) of R by condition C	Retrieves rows that satisfy condition C.	SELECT DISTINCT * FROM R WHERE C;	If R has {(1, Alice, 25), (2, Bob, 30)} and C is Age > 25, then σ_{age} >25(R) returns {(2, Bob, 30)}.				
ρ _S (R)	Renaming R as S	Renames relation R to S for easier reference.	R AS S	If R contains {(1, Alice), (2, Bob)}, then $\rho_T(R)$ treats it as T with the same data.				
R ⊨ S	Natural Join of R and S	Joins R and S on common attributes.	R NATURAL JOIN S (or, as SELECT) SELECT DISTINCT * from R NATURAL JOIN S;	If R = {(1, Alice), (2, Bob)} and S = {(1, NYC), (2, LA)}, R ⋈ S = {(1, Alice, NYC), (2, Bob, LA)}.				
R⊭θ≳	Theta Join of R and S on condition θ	Joins R and S where θ holds.	R INNER JOIN S SELECT DISTINCT * from R INNER JOIN S ON $\theta;$ SELECT DISTINCT * FROM R, S WHERE θ	If R has {(1, Alice), (2, Bob)} and S has {(1, NYC), (3, LA)}, then with θ: R.ID = S.ID, the result is {(1, Alice, NYC)}.				
R⊗S	Cartesian Product of R and S	Pairs every row of R with every row of S.	SELECT DISTINCT * FROM R, S;	If R = $\{(1, Alice)\}\$ and S = $\{(NYC),\$ (LA) $\}$, then R \otimes S = $\{(1, Alice, NYC), (1, Alice, LA)\}.$				

Operations							
Operation	Symbol	Meaning	Example				
Union	RυS	Rows in either R or S	If R = {A, B, C} and S = {B, C, D}, then R \cup S = {A, B, C, D}.				
Inters- ection	R∩S	Rows in both R and S	If R = {A, B, C} and S = {B, C, D}, then R \cap S = {B, C}.				
Difference	R - S	Rows in R that are not in S	If R = {A, B, C} and S = {B, C, D}, then R - S = {A}.				

Common SQL Types

Data Type	Description	Example
VARCHAR(n)	A text string.	'hello'
INTEGER	A whole number.	42
FLOAT	A floating point number.	9.7
NUMERIC(m,n)	A number with m digits, with n after the decimal point.	190.14 (E.g. mondey w/ NUMERIC(3,2))
DATE	A date in the calendar.	'2020-09-01'
TIME	A time of day.	'11:25:00'
TIMESTAMP	Both a date and a time.	'2020-09-01T 11:25:00'
CHAR(n)	Fixed-length string of length n.	'02155' (E.g. zip codes w/ CHAR(5))

Closures

The *closure* of a set of attributes X - denoted as X^+ - is the set of attributes determined by X according to a given set of FDs F

The Closure Algorithm:

- Start by setting $X^{\!+}$ to X .
- Repeat:
 - Choose an FD L -> R where $L \subseteq X^+$.
 - Add R to X⁺.
 - Record L -> R as having been used.
- Until there are no usable FDs left unused.

By kmuhle cheatography.com/kmuhle/ Not published yet. Last updated 8th February, 2025. Page 2 of 2. Sponsored by **Readable.com** Measure your website readability! https://readable.com