\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{klee} \pdfinfo{ /Title (dna-and-proteins.pdf) /Creator (Cheatography) /Author (klee) /Subject (DNA and Proteins Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{54C0FF} \definecolor{LightBackground}{HTML}{E9F7FF} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{DNA and Proteins Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{klee} via \textcolor{DarkBackground}{\uline{cheatography.com/181766/cs/37798/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}klee \\ \uline{cheatography.com/klee} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 20th March, 2023.\\ Updated 20th March, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{{\bf{PROTEIN STRUCTURE AND FUNCTION}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{The folding of a polypeptide (PP) to form a protein with a unique 3D shape is determined by its sequence of amino acids (AA).} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{} \tn % Row Count 3 (+ 0) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{STRUCTURE}}} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{{\emph{Primary Structure}}}}: A linear sequence of AA.} \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{{\emph{Secondary Structure}}}}: Hydrogen bonds of the peptide backbone causes the AA to fold into a repeating pattern. Most common type is alpha-helix and beta-sheet.} \tn % Row Count 9 (+ 4) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{{\emph{Tertiary Structure}}}}: 3D folding pattern of a protein due to chemical interactions and repulsions between AA.} \tn % Row Count 12 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{{\emph{Quaternary Structure}}}}: More than one PP chain.} \tn % Row Count 14 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{EXAMPLE OF PROTEINS}}} \tn % Row Count 15 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Enzymes, hormone receptors, some hormone receptors and antibodies.} \tn % Row Count 17 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{IMPORTANCE OF STRUCTURE}}} \tn % Row Count 18 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Retains the important genetic information, base pairings in PP strands can separate for replication and transcription.} \tn % Row Count 21 (+ 3) % Row 11 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{H bonds between comp. bases ensure DNA molecule does not form an irregular shape that will affect its function in the cell.} \tn % Row Count 24 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{{\bf{ENZYMES}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Enzymes are specific for their substrate and increase rate of reaction by lowering activation energy.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Induced-Fit Model}}: As an enzyme's active site binds with its specific and complementary substrate, their 3D shape changes to allow a perfect complementary fit between the active site and substrate.} \tn % Row Count 8 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{FACTORS}}} \tn % Row Count 9 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{{\emph{Temperature}}}}} \tn % Row Count 10 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Low}}:Slow movement-Less collisions-Decreased reaction rate} \tn % Row Count 12 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Optimal}}: Fast movement-More collisions-Increased reaction rate/until plateau} \tn % Row Count 14 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{High}}: Decreased reaction rate-Tertiary structure destabilised-Denaturated (can be reversed if minimal damage and moved to optimal)} \tn % Row Count 17 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{{\emph{pH}}}}} \tn % Row Count 18 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Non-optimal}}: Changes charge of AA-Alters shape 3D so cannot bind to comp. substrate-Decreased reaction rate} \tn % Row Count 21 (+ 3) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Optimal}}: Increased reaction rate} \tn % Row Count 22 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{{\emph{Inhibitors}}}}} \tn % Row Count 23 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Non-competitive}}: Attaches to enzyme-Chemically alters enzyme's active site-Substrate cannot bind} \tn % Row Count 25 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Competitive}}: Competes with substrate-Imitates 3D shape of substrate-Stops substrate from binding} \tn % Row Count 27 (+ 2) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{{\emph{Co-factors}}}}} \tn % Row Count 28 (+ 1) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Required to complete enzyme's active site to help substrate bind.} \tn % Row Count 30 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{{\bf{ENZYMES}} (cont)}} \tn % Row 15 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{{\emph{Concentration of enzyme}}}}} \tn % Row Count 1 (+ 1) % Row 16 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Increased concentration-More active sites-More collisions-Increased reaction rate/until plateau} \tn % Row Count 3 (+ 2) % Row 17 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{{\emph{Concentration of substrate}}}}} \tn % Row Count 4 (+ 1) % Row 18 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Increased concentration-More collisions-Increased reaction rate/until plateau} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{{\bf{DNA STRUCTURE}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Stores and transmits genetic info. and functions the same way in all living organisms.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{DNA is a helical double-stranded molecule.} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} {\bf{Eukaryotes}} & {\bf{Prokaryotes}} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} Bound to histones in linear chromosomes- Found in nucleus, chloroplasts and mitochondria. & Unbound, circular, single chromosome- Found in the nucleoid. \tn % Row Count 9 (+ 5) % Row 4 \SetRowColor{LightBackground} Simple Genome & Complex Genome \tn % Row Count 10 (+ 1) % Row 5 \SetRowColor{white} 1 copy of gene & 2 copies of gene \tn % Row Count 11 (+ 1) % Row 6 \SetRowColor{LightBackground} No homologous pairs & Chromosomes in homologous pairs-observed as karyotypes \tn % Row Count 14 (+ 3) % Row 7 \SetRowColor{white} Made of only DNA & Made of chromatin, nucleoprotein \tn % Row Count 16 (+ 2) % Row 8 \SetRowColor{LightBackground} Copies its chromosomes and divides immediately after & Copies chromosomes, then cells grow, goes through mitosis, organise chromosomes into 2 equal groups \tn % Row Count 21 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.2 cm} x{4.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{{\bf{ISSUES OF COLLECTING GENETIC INFO.}}}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Discrimination}} & Insurance companies and employers discriminate based on genetic health. \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{Ownership}} & Genetic info. collected should be legal property of the individual obtained from. \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} {\bf{Privacy/Confidentiality}} & Shared with other people without permission. \tn % Row Count 9 (+ 2) % Row 3 \SetRowColor{white} {\bf{Emotional Impact}} & Results can be distressing, leading to counselling for incurable genetic illnesses. \tn % Row Count 13 (+ 4) % Row 4 \SetRowColor{LightBackground} {\bf{Family Members}} & Could expose infidelities within the family, causing emotional damage. \tn % Row Count 16 (+ 3) % Row 5 \SetRowColor{white} {\bf{Young children}} & Cannot consent to being tested. \tn % Row Count 18 (+ 2) % Row 6 \SetRowColor{LightBackground} {\bf{Social Implications}} & Results can make an individual socially awkward due to stigmas against genetic illnesses. \tn % Row Count 22 (+ 4) % Row 7 \SetRowColor{white} {\bf{Reproductive Choices}} & Genetic illnesses affecting reproductive organs affect people having kids. Influenced by society, culture and religion. \tn % Row Count 27 (+ 5) % Row 8 \SetRowColor{LightBackground} {\bf{Limitations}} & Does not predict severity of genetic illnesses or age. Environment affects development of genetic diseases. \tn % Row Count 32 (+ 5) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.2 cm} x{4.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{{\bf{ISSUES OF COLLECTING GENETIC INFO.}} (cont)}} \tn % Row 9 \SetRowColor{LightBackground} {\bf{Inaccuracies}} & Possibility of misinterpreted or inaccurate results. False info. about individual's genetic health. \tn % Row Count 5 (+ 5) % Row 10 \SetRowColor{white} {\bf{Reliability}} & Can be unreliable indicator for genetic diseases, other studies required to assess reliability of genetic testing in the accurate diagnosis of genetic disease. \tn % Row Count 12 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.72 cm} x{5.28 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{{\bf{GENES}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{A unique sequence of nucleotides that code for a functional protein or RNA molecule.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} {\bf{Exons}}: & Code for protein \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} {\bf{Introns}}: & Do not code for protein \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{RNA SPLICING}}} \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{Immature mRNA}} contains exons and introns-Introns are removed-Exons spliced together-Forms {\bf{mature MRNA}}} \tn % Row Count 8 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{{\bf{PROTEIN SYNTHESIS}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Transcription of mRNA-Translation of mRNA into an AA sequence at ribosomes.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{TRANSCRIPTION (In the Nucleus)}}} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{1.}} RNA unwinds DNA strands-Template and Coding strand-Bases are exposed} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{2.}} Free {\bf{RNA nucleotides}} BP to comp. bases on {\bf{T strand}}} \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{3.}} {\bf{RNA Polymerase}} join positioned bases to form {\bf{mRNA}} (messenger RNA)} \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{4.}} mRNA peels away- DNA rewinds} \tn % Row Count 10 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{TRANSLATION}}} \tn % Row Count 11 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{1.}} mRNA leaves nucleus via {\bf{nuclear pores}}-attaches to ribosome in cytoplasm-2 codons inside at a time} \tn % Row Count 14 (+ 3) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{2.}} tRNA carries specific AA and anticodon comp. to codon-form H bond between anticodon and codon} \tn % Row Count 16 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{3.}}mRNA moves to next codon-2nd tRNA transfers AA to ribosome-peptide bonds join AA together-forming PP chain} \tn % Row Count 19 (+ 3) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{4.}}tRNA keeps bringing AA to ribosome until STOP codon on mRNA-PP released-forms protein} \tn % Row Count 21 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{{\bf{DNA REPLICATION}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Allows for genetic info. to be inherited.} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Base pairings (BPs) and method of DNA replication are universal} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{Structure}}: A phosphate group, deoxyribose sugar, nucleotide base (A,T,C,G).} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{H Bonds}}: Very weak bond between strands of DNA allow for replication.} \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{Importance of BP}}:} \tn % Row Count 8 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{A only binds to T. C only binds to G. Ensures the genetic info. is completely and correctly transferred to next generation.} \tn % Row Count 11 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{Semi-conservative Replication}}:} \tn % Row Count 12 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{1 OG DNA=2 daughter DNA-Helicase separates OG strands to become template for newly synthesised strands of DNA-Each daughter molecule has one OG strand.} \tn % Row Count 16 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{{\bf{DNA PROFILING}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{DNA EXTRACTIONS FROM TARGET CELL}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Cell lysis}}: Detergents added-Breaks down cell and nuclear membranes-Releases DNA} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Protein Removal}}: Protease and RNAase added-Removes proteins and RNA-Centrifuge-Forms a pellet of cell debris} \tn % Row Count 6 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{DNA Precipitation}}: Add ice-cold ethanol-DNA precipitates from solution} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{DNA Purification}}: DNA is washed-Removes impurities} \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{POLYMER CHAIN REACTION (PCR)}}: Amplifies target gene} \tn % Row Count 12 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Requires}}: DNA Polymerase, Free nucleotides, Primers, Target gene} \tn % Row Count 14 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Process}}} \tn % Row Count 15 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Denaturation}}: Heated-H bonds break-DNA unwinds-Bases are exposed} \tn % Row Count 17 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Annealing}}: Cooled-Primers bind to separated strands of target DNA through H bonds between comp. bases-DNA nucleotides bind to exposed bases} \tn % Row Count 20 (+ 3) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Extension}}: Heated- DNA Polymerase joins nucleotides to produce new DNA} \tn % Row Count 22 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Repeated 25-30 times until sufficient amount of DNA fragments} \tn % Row Count 24 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{ELECTROPHORESIS}}} \tn % Row Count 25 (+ 1) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Used to separate DNA molecules/fragments of different sizes.} \tn % Row Count 27 (+ 2) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Process}}} \tn % Row Count 28 (+ 1) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{DNA fragments are negatively charged-Attracted to positive-Length travelled determines size of fragment- Marker DNA determines (Smaller=Faster \& \seqsplit{Larger=Slower)-Fluorescent} dye used for DNA Profile} \tn % Row Count 32 (+ 4) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{{\bf{DNA PROFILING}} (cont)}} \tn % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Is a DNA-based pattern composed of a series of bands correspond to DNA fragments of different sizes.} \tn % Row Count 2 (+ 2) % Row 17 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{DNA profile is unique to each individual. Approx. half from mother and half from father.} \tn % Row Count 4 (+ 2) % Row 18 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Introns contain highly repetitive sequences of bases called {\bf{Short Tandem Repeats (STRs)}} .} \tn % Row Count 6 (+ 2) % Row 19 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{STRs can determine: number of repeats in each allele at a locus, total length of STR} \tn % Row Count 8 (+ 2) % Row 20 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{STRs containing variable numbers of repeating nucleotides are called {\bf{Variable Number Tandem Repeats (VNTRs)}} (6-100bp).} \tn % Row Count 11 (+ 3) % Row 21 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{VNTRs has 2 types: Minisatellites (10-70 nucleotides) and Microsatellites (Less than 10 nucleotides))} \tn % Row Count 14 (+ 3) % Row 22 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Single Nucleotide Polymorphism (SNPs)}}: Detects types of changes due to mutations from one generation to next.} \tn % Row Count 17 (+ 3) % Row 23 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Found throughout genome-Looks at allele and determines sequence change between 2 genes.} \tn % Row Count 19 (+ 2) % Row 24 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{If less than 1\% of population does not carry the same nucleotide at same position in DNA sequence-Classified as SNPs.} \tn % Row Count 22 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.36 cm} x{4.64 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{{\bf{DNA SEQUENCING}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Nucleotide base sequence of target DNA molecule can be determined.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{Chain termination method}}} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} {\bf{ddNTPs (deoxynucleotides)}} & Modified DNA nucleotide- cannot form sugar phosphate bond with other dNTPs or ddNTP-last nucleotide on fragment-terminating the strand \tn % Row Count 9 (+ 6) % Row 3 \SetRowColor{white} {\bf{dNTPs}} & Normal DNA nucleotide \tn % Row Count 10 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{Process}}} \tn % Row Count 11 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{1.}} 4 test tubes- many copies of target DNA molecule} \tn % Row Count 13 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{2.}} All 4 dNTPs added to each tube in excess} \tn % Row Count 14 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{3.}}Different ddNTP added to each tube} \tn % Row Count 15 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{4.}}Primers \& DNA polymerase added} \tn % Row Count 16 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{5.}}Thermocycler} \tn % Row Count 17 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{6.}} DNA replication stops when ddNTPs joins to strand-produces many incomplete template DNA} \tn % Row Count 19 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{7.}}Contents poured into 4 separate wells in gel-separated through electrophoresis-relative DNA sequence of target DNA revealed} \tn % Row Count 22 (+ 3) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{ELECTROPHEROGRAM}}} \tn % Row Count 23 (+ 1) % Row 13 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Can determine base sequence of unknown segment of DNA-Observe change in base sequence of different genomes for genetic diseases-For forensics, disease detection, paternity} \tn % Row Count 27 (+ 4) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Follows same principle of electrophoresis-gel, DNA fragments etc.} \tn % Row Count 29 (+ 2) % Row 15 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{Capillary Tubes}} inside a DNA sequencer-Different colour associated with ddNTPs-Fragments pass through light-ddNTPs absorb light then emits light which enters a detector} \tn % Row Count 33 (+ 4) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.36 cm} x{4.64 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{{\bf{DNA SEQUENCING}} (cont)}} \tn % Row 16 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Detector graphs light into an electric current-producing Electropherogram-height represents amount of light absorbed and emitted-represents sequence of target DNA molecule} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.96 cm} x{5.04 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{{\bf{TERMS}}}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Allele}} & An individual inherits two alleles, one from each parent, for any given genomic location where such variation exists. If the two alleles are the same, the individual is homozygous for that allele. If the alleles are different, the individual is heterozygous. \tn % Row Count 11 (+ 11) % Row 1 \SetRowColor{white} {\bf{Genome}} & Entire set of DNA found in a cell. \tn % Row Count 13 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{Locus}} & Particular position or place where something occurs or is situated. \tn % Row Count 16 (+ 3) % Row 3 \SetRowColor{white} {\bf{rRNA}} & Molecule in ribosome and is exported to the cytoplasm to help translate the information in mRNA into protein. \tn % Row Count 21 (+ 5) % Row 4 \SetRowColor{LightBackground} {\bf{Coding vs. Template}} & Coding strand determines the correct nucleotide sequence of mRNA. Template strand acts as a base for mRNA transcription. \tn % Row Count 26 (+ 5) % Row 5 \SetRowColor{white} {\bf{DNA vs. RNA Codon}} & The DNA codons are identical to the RNA codons, except for the one base thymine (T), which replaces uracil (U) in the RNA codons. \tn % Row Count 32 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{{\bf{EPIGENETICS}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{GENE EXPRESSION}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Genes are used to direct protein synthesis. {\bf{Housekeeping Genes}} are expressed continuously, involved with general cellular maintenance and energy provision. Others are switched on or off in certain cells at particular times according to the function of the cell. Others are permanently switched off.} \tn % Row Count 8 (+ 7) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{CELL DIFFERENTIATION}}} \tn % Row Count 9 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Results from the regulation of gene expression. All organisms that reproduce sexually start life as a fertilised egg or zygote. As this single cell begins to divide, stem cells differentiate into specialised cells e.g. nerve cells, epithelial cells, muscle cells, sex cells etc.} \tn % Row Count 15 (+ 6) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{DNA METHYLATION}}} \tn % Row Count 16 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{A methyl group (CH3) is added to cytosine bases in the DNA strand-{\bf{switches off}} a gene by {\bf{blocking RNA polymerase and preventing transcription}}. {\bf{Demethylation}} activates a gene and {\bf{allows transcription}} to occur.} \tn % Row Count 21 (+ 5) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{HISTONE MODIFICATION}}} \tn % Row Count 22 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{DNA is packaged with histone proteins to form chromatin. When chromatin is tightly wound and packaged RNA polymerase is unable to bind to DNA and as such, transcription cannot occur and the gene is 'switched off'. When acetyl groups are added to histones, chromatin is unwound so that RNA polymerase can bind, transcription can occur and the genes are 'switched on'. Acetyl groups can be added and removed.} \tn % Row Count 31 (+ 9) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{{\bf{EPIGENETICS}} (cont)}} \tn % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{TRANSCRIPTION FACTORS}}} \tn % Row Count 1 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Transcription factors are proteins that control the rate of transcription. These proteins either promote or prevent the binding of RNA polymerase to the gene to be transcribed which changes the gene expression. Some transcription factors, called activators bind to DNA and activate or increase the rate of transcription, whereas others, called repressors bind to DNA and slow or stop transcription.} \tn % Row Count 9 (+ 8) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{TRANSLATION FACTORS}}} \tn % Row Count 10 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Class of proteins that control the rate of translation through the activation or inhibition of ribosomes. Non-coding RNAs (ncRNA) act on mRNA already transcribed and modify or destroy mRNA molecules so that they are not translated. For example: Micro RNAs prevent translation by bonding with complementary bases on target mRNA molecules-Small interfering RNA causes mRNA to be degraded after transcription-Long non-coding RNA regulates the activity of proteins involved in the transcription of genes.} \tn % Row Count 21 (+ 11) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{PROCESSING IMMATURE MRNA MOLECULES}}} \tn % Row Count 22 (+ 1) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Regulating the production of RNA molecules with different splicing of RNA sections: Some transcripts can undergo alternative splicing, making different mRNAs and proteins from the same RNA transcript.} \tn % Row Count 27 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}