Cheatography

CS 2700 - Mid-Term Cheat Sheet by kjwkc3 via cheatography.com/20734/cs/3623/

Organiza	auon vs. Architecture
Archit- ecture	The attributes of a system visible to a programmer
Organi zation	The oerational units and their interconn- ections that realize the architectural specifica- tions
Main Co	mponents of the CPU
Control Unit	Controls the operation of the CPU and hence the computer
Arithmet	ic Performs the

Arithmetic	Performs the
and Logic	computers data
Unit	processing function
Registers	provides storage central to the CPU
CPU	some mechanism
Interconn-	that provides for
ection	communication
	among the control
	unit, ALU, and
	registers

Integer Representation (cont)

Drawbacks: addition and subtraction need to take sign and number into consideration for calculations and there are two ways to represent 0. To extend range: Move sign bit to new leftmost bit and fill rest with Os Two's Complement: Similar to sign magnitude, except for how the other digits except the signed one are considered. to extend range: move sign bit to new leftmost bit and fill rest with same sign as sign bit **Biased Representation** A fixed value is subtracted from the field

Structure vs. Function		
Structure	The way in which the components are interrelated	
Function	The operation of each individual component as part of the structure	

First generation computers: ENIAC -> IAS Computer -> UNIVAC

"von Neumann Machines" Why important? - Stored-Program Concept How does it work? - 1000 memory locations called words, which are 40 bits each. Each word is divided into a left and right instruction. Each instruction is divided into an 8 bit opcode saying the operation to be performed and a 12 bit address pointing to one of the words in

memory. Repeatedly performs instruction cycles, divided between the fetch and execute cycles. In the fetch cycle, the opcode of the next instruction is loaded into the IR and the address portion is loaded into the MAR.

HISTORY (cont)

This instruction may be taken from the IBR, or it can be obtained from memory by loading a word into the MBR and then down to the IBR, IR, and MAR. Once opcode is in IR, execute cycle is performed opcode is interpreted and sends out the appropriate signals to cause data to be moved or an operation to be performed by the ALU. Second Generation: Transistors Transistors are smaller and cheaper than vacuum tubes.

This created a huge boom in availability of computers. Third Generation: Integrated Circuits

All of these components can now be produced in silicon chips instead of discrete components, further reducing the cost and size of computers.

Integer Representation

Sign Magnitude: +18 = 00010010-18 = 10010010 Benefits: Simple

By kjwkc3

cheatography.com/kjwkc3/

Published 6th March. 2015. Last updated 13th May, 2016. Page 1 of 2.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

Cheatography

CS 2700 - Mid-Term Cheat Sheet by kjwkc3 via cheatography.com/20734/cs/3623/

Main Functions that a computer can perform	Main Compo Computer	onents of a
Data Processing Data Storage Date Movement Control Moore's Law	Central Processing Unit (CPU)	Controls the operation of the computer and performs its data processing functions
The number of transistors that	Main Memory	Stores Data
can be placed onto a chip doubles every year. revised to every 18 months since the 1970s Importance:	I/O	Moves data between the computer and its external enviro- nment
same while computing powerdoubles2) Operating Speed is increaseddue to shorter electricalpathways because everything is	System Interconn- ections	Some mechanism that provides for communication among CPU, mai memory, and I/O
so close together 3) Smaller size means	EQUATION	3
 computers can be placed in more environments 4) Reduction in power and cooling requirements 5) With more circuitry on each chip, there are fewer interchip connections 	CPI = (SUM_i=1^n (CPI_i x I_i) I_C T = I_C x CPI x Tau Tau = 1/f MIPS rate = I_C / (T x 10^6) or f (CPI x 10^6) MFLOPS rate = (number of executed floating-point operations in a program) /	

Processing Unit (CPU)	operation of the computer and performs its data processing functions
Main Memory	Stores Data
I/O	Moves data between the computer and its external enviro- nment
System Interconn- ections	Some mechanism that provides for communication among CPU, main memory, and I/O.
EQUATIONS	
CPI = (SUM I_C T = I_C x CP Tau = 1/f MIPS rate = (CPI x 10^6) MFLOPS rat executed float operations in (execution times)	_i=1^n (CPI_i x I_i)) / 'I x Tau I_C / (T x 10 ⁶) or f / e = (number of ating-point a program) / ma x 10 ⁶)

((1 - f) + (f/N))

By kjwkc3 cheatography.com/kjwkc3/ Published 6th March, 2015. Last updated 13th May, 2016. Page 2 of 2.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com