

by kjaniskevich via cheatography.com/132444/cs/26822/

Classification of autonomic drugs			
Stimulate parasympathetic nervous system	Cholinergic parasympathomimetic or muscarinic agonists		
Inhibit parasympathetic nervous system	Anticholinergics parasympatholytic or muscarinic blockers		
Stimulate sympathetic nervous system	Adrenergic sympathomimetics or adrenergic agonists		
Inhibit sympathetic nervous system	Adrenergic antagonists anti-adrenergics or adrenergic blockers		

Classes of autonomic drugs				
Cholin- ergics	Stimulate the parasympathetic nervous system rest-and-digest Receptor: Acetylcholine (musca- rinic)	Direct acting Indirect acting		
Anticholi- nergics	Inhibit the parasympathetic nervous s induces fight-or-flight (sympathetic)	ystem, which		
Adrenergic	Stimulate the sympathetic nervous system Result depends on type and location of receptor (α or $\beta)$	α 1 agonist α 2 agonist β 1 agonist β 2 agonist Catecholamines		
Adrenergic antagonist	Inhibit sympathetic nervous system Action depends greatly on type of receptor $(\alpha \text{ or } \beta)$	α 1 antagonist 1 antagonist β 2 antagonist		

Cholin-	Cholin- Stimulate the parasympathetic	
ergics	nervous system rest-and-digest Receptor: Acetylcholine (musca-	2.Indirect acting
	rinic)	
Anticholi- nergics	Inhibit the parasympathetic nervous s induces fight-or-flight (sympathetic)	ystem, which
Adrenergic	Stimulate the sympathetic nervous system Result depends on type and location of receptor (α or $\beta)$	α 1 agonist α 2 agonist β 1 agonist β 2 agonist Catecholamines
Adrenergic antagonist	Inhibit sympathetic nervous system Action depends greatly on type of receptor (α or β)	α 1 antagonist 1 antagonist β 2 antagonist

Primary neurotransmitters in the CNS

The CNS is responsible for our perception, mood, consciousness, behaviour, and cognition Therefore, drugs influence perception, mood, consciousness, behaviour, and cognition by altering neurotransmitter activity

Serotonin (5HT) mood

Primary neurotransmitters in the CNS (cont)			
GABA	inhibitory		
Norepinephrine (NE)	stimulatory		
Dopamine (D)	behaviour & movement		
Glutamate	stimulatory		
Adverse effects of CNS drugs			
Benzod- drowsiness, sedation, memory loss, weakness, disori-			

Adverse et	Adverse effects of CNS drugs		
Benzod- iazepine	drowsiness, sedation, memory loss, weakness, disori- entation, ataxia, sleep disturbances, hypotension, blurred/double vision, nausea and vomiting		
Barbit- urates	Rarely prescribed anymore for anxiety or insomnia because of side effects		
Hypnot- ic/sed- atives	dizziness, headache, daytime drowsiness, dyspepsia, dry mouth, bitter metallic taste, nausea, anterograde amnesia		
Melatonin	Adverse effects and monitoring mostly limited to drowsiness level (caution with endocrine dysfunction) because it's identical to endogenous		
TCA's	sedation, dizziness, orthostasis, blurred vision, dry mouth, tachycardia, cognitive impairment, constipation, dry eyes, urinary retention		

By kjaniskevich

Published 1st March, 2021. Last updated 1st March, 2021. Page 1 of 15.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

by kjaniskevich via cheatography.com/132444/cs/26822/

Adverse effects of CNS drugs (cont)

SSRI's	Transient: headaches, nervousness, insomnia, nausea, diarrhea	
	Long-term: Sexuuation	ual dysfunction, withdrawal upon discontin-
MAOI's		ry mouth, headaches, changes in heart pressure, insomnia, nausea, loss of
	Food intera- ctions	foods containing tyramine = Hypertensive Crisis!!!
Mood stabil- izers	urination, GI ups	ue, short-term memory loss, increased set, dry mouth, muscular weakness, ive loss of sodium can lead to toxicity
	In the absence of	of sodium (Na), the cells take in lithium

Adverse effects of CNS drugs (cont)

lithium toxicity

Transient gastrointestinal symptoms are the earliest side effects to occur Mild degree of fine tremor of the hands may persist throughout therapy Thirst and polyuria may be followed by increased drowsiness, ataxia, tinnitus and blurred vision, indicating early toxicity As intoxication progresses the following manifestations may occur: confusion, increasing disorientation, muscle twitches, hyperreflexia, nystagmus, seizures, diarrhea, vomiting, and eventually coma and death

CNS stimulants

Insomnia, anxiety, restlessness, agitation, significant nausea/vomiting, anorexia (give with food), Cough, dry mouth, Tachycardia, hypertension, arrhythmias --> monitor and watch for signs of cardiovascular disease

dose in AM or early afternoon

By kjaniskevich

Published 1st March, 2021. Last updated 1st March, 2021. Page 2 of 15. Sponsored by **CrosswordCheats.com**Learn to solve cryptic crosswords!
http://crosswordcheats.com

by kjaniskevich via cheatography.com/132444/cs/26822/

Adverse et	ffects of CNS drugs (cont)
Typical antips-ychotics	dizziness, drowsiness, orthostatic hypotension, dry mouth, dry eyes, constipation, blood dyscrasias (abnormal lab tests)
	EPS and NMS occur with typical antipsychotics
Atypical antips- ychotics (cloza- pine)	significant agranulocytosis, seizures, tachycardia, NMS • BUT HAS NO EPS
Atypical antips- ychotics (all the rest)	drowsiness, dizziness, dry mouth, hyperglycemia, changes in cholesterol levels, weight gain, EPS
Barbit- urates for seizures	Soft tissue irritant – avoid injecting if possible IM – inflammation; IV – tissue necrosis Can cause vitamin deficiencies (D, B12, folate) • Requires adequate

Adverse eff	Adverse effects of CNS drugs (cont)		
Phenytoin	dysrhythmias, headache, nystagmus, confusion, slurred speech, changes urine colour (red/brown), blood dyscrasias, hyperglycemia, gingival hypertrophy, skin reactions, osteoporosis		
Valproic Acid	: sedation, GI upset, prolonged bleeding time, visual disturbances, ataxia, vertigo, muscle weakness, hepatotoxicity, pancreatitis, bone marrow suppression		
Succin- imides	mental and physical impairment, psychosis, behavi- oural changes, CNS effects, bone marrow suppression		
dopamine agonist	reduced impulse control		
Opioid Analgesics	sedation, fatigue, euphoria, confusion, constipation, respiratory depression, nausea, vomiting		

By **kjaniskevich**

supplementation

Published 1st March, 2021. Last updated 1st March, 2021. Page 3 of 15. Sponsored by **CrosswordCheats.com**Learn to solve cryptic crosswords!
http://crosswordcheats.com

by kjaniskevich via cheatography.com/132444/cs/26822/

Adverse effects of CNS drugs (cont)		
Opioid Antagonist	minimal toxicity, however the effect of reversing analgesia will cause increased blood pressure, tremors, hyperventilation, nausea/vomiting and drowsiness (i.e. sudden withdrawal symptoms)	
NSAIDs	gastric and epigastric discomfort, increased bleeding time, nausea, possible nephrotoxicity, cardiovascular events with long term use	
acetam- inophen	possible liver damage (hepatotoxic metabolite), causes less gastric irritation than aspirin, does not affect blood coagulation BUT can interact with warfarin	
Gabapentin	Fatigue, weight gain, heartburn, ataxia, dizziness very common	
Pregabalin (Lyrica®)	Dizziness, fatigue, peripheral edema, dry mouth	
	better tolerated than Gabapentin	

Adverse ef	Adverse effects of CNS drugs (cont)		
Corticost- eroids	infections, hyperglycemia, hypertension, thinning skin, easy bruising, moon face, osteoporosis, HPA-axis suppression		
Muscle relaxants	sedation, dry mouth, urinary retention (anticholinergic effects)		
Anesth- etics	tingling, mucosal irritation, CNS toxicity, cardiovascular collapse		
Duloxetine (Cymba- lta®)	Nausea, dizziness, fatigue all common		
Triptans	dizziness, drowsiness, warming & prickling sensation, may experience rebound headache Vasoconstriction =↑ BP		
Ergot Alkaloids	leg weakness, muscle pain in extremities, nausea and vomiting		

Serotonin Syndrome

↑ risk when >1 drug that increases serotonin in the body Not always obvious due to promiscuity – triptans, tramadol, etc. symptoms: Hypertension, tremors, sweating, shivering, confusion, anxiety, restlessness, tachycardia, muscle twitching Anywhere from 30 mins after dose --> weeks after dose of the 2nd

Emotional & Mood Disorders

Depression

Mood Disorders (Bipolar)

Post-traumatic Stress Disorder (PTSD)

Attention Deficit Hyperactivity Disorder (ADHD)

Many more (hundreds)

By kjaniskevich

Published 1st March, 2021. Last updated 1st March, 2021.

Page 4 of 15.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords!

http://crosswordcheats.com

by kjaniskevich via cheatography.com/132444/cs/26822/

Medication for Emotional & Mood Disorders			Medication	n for Emotional & Mood D	Disorders (cont)
Anti- dep- res- sants	1.Tricyclic antidepre- ssants (TCAs)	Work by inhibiting reuptake of norepinep- hrine, serotonin, and dopamine, leaves more neurotransmitter within cleft		(Remeron®)(SNRI), veni	Zyban®)(NDRI), mirtazapine lafaxine (Effexor®)(SNRI), SNRI), trazodone (Desryl®)-
	 -triptyline; -pramine -oxepine 2.Selective Work by inhibiting reuptake of serotonin only serotonin inhibiters 		Mood stabil- izers	the release, synthesis, ar ransmitters	sodium transport, it influences and reuptake of multiple neurot-
	(SSRIs) Citalopram, estine, sertraline	scitalopram, fluoxetine, fluvoxamine, paroxe-		Primarily used for bipolar Lithium carbonate Anticonvulsants:	disorder (manic-depression) Anticonvulsants are also
	3. Monoamine oxidase inhibitors	Reserved for people who haven't responded noamine to SSRI or TCA Inhibits monoamine oxidase (MAO) which		carbamazepine, divalp- roex, lamotrigine, valproic acid, gabape- ntin, topiramate	used as mood stabilizers because they also alter transport of ions across cell membranes
(MAOIs) norepiner breaks do serotonin smitters a		norepinephrine in the synaptic cleft breaks down dopamine, epinephrine, and serotonin leaves more of these neurotran- smitters as well causing many side effects and interactions	CNS stimulants	(non-specifically) Primarily used for ADHD All cause an increase in	in children and adults attentiveness and heightened g NE and D release somehow
	Phenelzine, tranylcypromine, moclobemide				
	4. Atypical antidepressants	Inhibiting reuptake of serotonin, norepinep- hrine and dopamine activity with different affinities Also work on other receptors like histamine			

By **kjaniskevich**

Published 1st March, 2021. Last updated 1st March, 2021.

Page 5 of 15.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

by kjaniskevich via cheatography.com/132444/cs/26822/

Medication for Emotional & Mood Disorders (cont)

Methylphenidate (Ritalin®, Concerta®, Biphentin®) Dextroamphetamine (Dexedrine®) Dextroamphetamine and amphetamine (Adderall®) Lisdexamfetamine (Vyvanse®)

Dogovernius diseases			
Parkinson's disease	Gradual destruction of neurons from substantia nigra → striatum of brain that use dopamine to communicate Movements and impulses essential to performance of movements ↓ number of dopaminergic neurons → ↓ dopamine Symptoms are a characterization of ↓ dopamine		
Parkinson's symptoms	Classic features: Tremor, Bradykinesia, Rigidity, Loss of balance Other features; Depression, anxiety, mood change, Memory loss> dementia, Difficulty concentrating, Change in sense of smell, Change in sleeping patterns, Constipation, light-headedness, sweaty, Difficulty swallowing, chewing, speaking, blinking		
Dementia	A term that describes a decline in a variety of functions (e.g. memory, language, motor activities, ability to recognize or identify objects, complex decision-making) which eventually causes a person to have difficulty performing everyday activities		
Types of Dementia			

Degenerative diseases (cont)		
Alzheimer's Disease	amyloid plaques and tangles	
Vascular Dementia	reduced blood supply	
Frontotemporal Dementia	younger patients, highly genetic, odd behaviours	
Lewy Body Dementia	presence of Lewy Bodies, well-formed hallucinations	
Parkinson's Disease Dementia	Parkinson's usually diagnosed first – both neurodegenerative	
Parkinson's disease management: All pharmacotherapy focuses on † dopamine levels (directly or indirectly)		
Classes of medication	n for Parkinson's	
Levodopa Effective	e cornerstone of therapy	
Donami	ne cannot cross blood-brain barrier (BBB) The	

Classes of m	nedication for Parkinson's
Levodopa	Effective cornerstone of therapy Dopamine cannot cross blood-brain barrier (BBB) The enzyme that creates dopamine (decarboxylase) is everywhere in the body Levodopa → crosses BBB → converted to dopamine via decarboxylase It is a prodrug Levodopa is always paired with either carbidopa or benserazide (decarboxylase inhibitors that DO NOT cross BBB), which does two things: 1) Enhances distribution to brain 2) Minimizes acute side effects Because conversion to dopamine occurring past BBB (mostly)
Dopamine Agonists	stimulate dopamine receptors
MAO-B Inhibitors (MAOIs)	inhibit the enzyme that breaks down dopamine
Amantadine	either releases more dopamine or inhibits re-uptake of dopamine (exact mechanism unknown) also anti-viral
COMT Inhibitors	inhibit peripheral conversion of levodopa to dopamine (making levodopa more efficient)

C

By **kjaniskevich**

Published 1st March, 2021. Last updated 1st March, 2021. Page 6 of 15. Sponsored by **CrosswordCheats.com** Learn to solve cryptic crosswords! http://crosswordcheats.com

by kjaniskevich via cheatography.com/132444/cs/26822/

Classes of medication for Parkinson's (cont)

Anticholinergics block acetylcholine, which restores balance of

acetylcholine and dopamine

for tremor only

All other medications for Parkinson's (excluding Levodopa) work to

either directly or indirectly to↑ dopamine in brain

Classes of medication for Dementia

Treatment of Dementia

1.Cholinesterase of acetylcholine causes plaques & tangles)
Inhibitors May show small improvements in measures of
Donepezil, cognition and activities of daily living (ADL) (1-3

galantamine, points on MMSE)

rivastigmine May slow progression (by months, not years)

If benefit, seen in 3-6 months

Only approved for Alzheimer's but prescribed for

all types

2.N-methyl-Daspartate Block glutamate (excitatory amino acid) at NMDA receptor (Theory: persistent activation of NMDA

(NMDA) contributes to symptoms) antagonist No effect on acetylcholine

Memantine Alone or in combo with cholinesterase inhibitor –

directly conflicting evidence re: benefit $\hbox{Indication: Moderate} \to \hbox{Severe Alzheimer's}$ Renally excreted (dosage adjustment needed for

impairment)

Management of Behavioural & Psychological Symptoms of Dementia (BPSD)

Antipsychotics, benzodiazepines, antidepressants, stimulants and more

Classification of Pain

Duration

A.Acute pain Intense, Less than 6 months

E.g. sprained ankle

B. Chronic Persists for longer than 6 months, Interferes with

pain daily activities, Associated with feelings of

hopelessness

E.g. permanent nerve injury

Source

A. Nociceptor Pain Due to injury to tissues

Sharp, localized; or Dull, throbbing, aching

E.g. paper cut, broken bones

B. Neuropathic Pain

Due to injury to nerves

Burning, shooting, numbing

E.g. nerve injury, shingles

Pharmacological management

Requires thorough:

Health history (including allergies)

BPMH – best possible medication history

Includes an assessment of stress, coping mechanisms, potential for $% \left(1\right) =\left(1\right) \left(1\right)$

dependency

Baseline assessment including character, location, duration and

intensity of pain

Migraines

Goal of To reduce acute pain via

treatment 1.Triptans or

2.Ergot alkaloids

To prevent further migraines from occurring

If patient experiences a significant amount of migraines $\beta\text{-blockers},$ anticonvulsants (topiramate, valproic acid),

calcium channel blockers, TCAs, venlafaxine

Classes of drugs for migraines

By kjaniskevich

Published 1st March, 2021. Last updated 1st March, 2021. Page 7 of 15. Sponsored by **CrosswordCheats.com**Learn to solve cryptic crosswords!
http://crosswordcheats.com

by kjaniskevich via cheatography.com/132444/cs/26822/

Migraines (cont)

1.Triptans

Selective serotonin receptor agonist on intracranial blood vessels and sensory nerves on the trigeminal system

Causes vasoconstriction and reduces neurogenic inflammation, relieving migraine headache

Used for acute cluster headaches or migraines (with or without aura) as early as possible

Available as regular oral tabs, oral disintegrating tablets, injections, nasal spray (due to frequent nausea/vomiting) – we want quick onset Expensive (require EDS in Sask)

Interaction with any other drug that also \uparrow serotonin serotonin syndrome

Tolerance can develop – remind patients to use only when necessary and as few doses as needed

2.Ergot alkaloids

Serotonin receptor agonist and interacts with dopamine and adrenergic receptors (α -blocker)

Therefore, more adverse effects

Dihydroergotamine – given IV, may see repeated administration for 3-7 days to break cycle of repeat migraines

DO NOT GIVE WITHIN 24 HOURS OF TRIPTAN Additive vasoconstriction --> coronary vasospasm Mostly used if triptans fail

Migraine Monitoring:

History of migraines, triggers, and previous treatment, focus on prevention

Effectiveness of treatment (assess pain level)

Blood pressure and pulse

Watch for chest pain, palpitations, confusion, tingling in extremities, or sudden change of headache status (Fever? Rash? Stiff neck?) Headaches are usually a symptom

Nervous system

Branches of peripheral	1.Somatic	Voluntary control over
nervous system	nervous system	skeletal muscles

Nervous system (cont)		
	2. Autonomic nervous system	Involuntary control over smooth and cardiac muscle and glands Divided into sympathetic and parasympathetic
Autonomic nervous system	1. Sympat- hetic	Activated under stress Fight-or-flight response Primitive response to avoid harm
	2. Parasy- mpathetic	Activated under non-stressful conditions Rest-and-digest response

Primary	neurotransmit	tters in the periphery
Norepi- nep- hrine (NE)	Binds with ad	renergic receptors
	Alpha (α) receptors (α1 & α2)	lpha1-adrenergic Receptors In sympathetic target organs except heart $lpha$ 2-adrenergic Receptors At presynaptic adrenergic neuron terminals
	Beta (β) receptors (β1 & β2)	β1-adrenergic Receptors Mostly in heart muscle β2-adrenergic Receptors Mostly in the lungs
Acetyl- choline (Ach)	Binds with ch	olinergic receptors
	Muscarinic receptors	Binding to muscarinic receptor varies between stimulatory and inhibitory action, depending on site

receptors

Nicotinic

receptors

C

By kjaniskevich

Published 1st March, 2021. Last updated 1st March, 2021. Page 8 of 15. Sponsored by **CrosswordCheats.com** Learn to solve cryptic crosswords! http://crosswordcheats.com

Skeletal muscle, smooth muscle, glands

Not many useful drugs affect nicotinic

by kjaniskevich via cheatography.com/132444/cs/26822/

Adverse effects of autonomic drugs

Cholinergics salivation, sweating, abdominal cramping and

hypotension

Anticholinergics dry mouth, constipation, urinary retention,

confusion, tachycardia

Less mucous production = dry mouth, eyes, nose Pupil dilation, blurred/double vision, increased

intraocular pressure

Less sweating = ↑ in body temp

Urinary retention = ↑ risk of infection

CNS = Agitation, inability to concentrate,

confusion -> delirium, hallucinations, illogical

thinking, incoherent speech

 α -adrenergics Oral - anxiety, restlessness, tremor, hypertension,

tachycardia

Nasal – burning of mucosa, rebound congestion if

used for long periods

adrenergic antagonist β1 - bradycardia, hypotension, headache, fatigue, dizziness, sleep disturbances, nausea; most are

dose-related and appear early in therapy

Rebound tachycardia, arrhythmias and infarction if

discontinued suddenly

Anxiety and Sleep Disorders

Anxiety Disorders

blocking

Generalized anxiety disorder (GAD) ,Phobias, Panic disorders, Obsessive-compulsive disorder (OCD), Post-traumatic stress disorder (PTSD)

Anxiety and Sleep Disorders (cont)

Sleep Either an inability to: Fall asleep, Stay asleep, or

Disorders Both

In both anxiety and sleep disorders, nonpharmacological management is more effective LONG TERM

Medications provide relief but should be used for SHORT TERM if possible in addition to non-pharmacological management

CNS depressants

1.Benzodi- azepines	Intensify GABA (bind to benzodiazepine receptors on a GABA receptor)
2.Barbitu- rates	Enhance GABA (bind to barbiturate receptor on GABA receptor)
3.Hypnoti- cs/Sed- atives	Commonly also use a benzodiazepine receptor to potentiate GABA, but much more specific
	Bind only to GABA1 for sleep Only cause sedation no anxiolytic or anticonvulsant properties
4.Miscell- aneous	Can act on any neurotransmitter any drug that causes sedation can potentially be used to induce or prolong sleep even if it is an adverse effect
	Includes antihistamines such as diphenhydramine (Benadryl®), dimenhydrinate (Gravol®) or hydroxyzine (Atarax®)
CNS depression is a continuum	muscle relaxation>sedation>induce sleep>anesthesi- a>coma>death

Slow down neural activity in the brain, May or may not be specific for certain neurotransmitters

Classes of Medication for Psychosis

Typical antipsychotics conventional, 1st generation

- good at managing positive symptoms,

no dependence

D > 5HT

More side effects (especially EPS) than

atypical

C

By kjaniskevich

Published 1st March, 2021. Last updated 1st March, 2021. Page 9 of 15. Sponsored by **CrosswordCheats.com** Learn to solve cryptic crosswords! http://crosswordcheats.com

by kjaniskevich via cheatography.com/132444/cs/26822/

Classes of Medication for Psychosis (cont)

A. Phenothiazines Chlorpromazine

Blocks post-synaptic dopamine receptors; also blocks histamine and

muscarinic receptors

Used to manage mania and psychosis, prevention and treatment of nausea and

vomiting

other phenothiazines:Fluphenazine, Methotrimeprazine, Perphenazine, Promazine, Trifluoperazine

B. Non-Phenothiazines Haloperidol

Blocks post-synaptic dopamine

receptors

Used to manage psychotic disorders, Tourette's, manic states; also an

antiemetic

other non-phenothiazines: Flupentixol, Loxapine, Pimozide, Thiothixene, Zuclopenthixol

Atypical anti-psychotics

unconventional, 2nd generation

Newer class - now drugs of choice

No dependence

More specific for serotonin than dopamine receptors, with different

Also bind to α-receptors in periphery Less side effects (especially EPS) than

typicals/1st Gen

A.Clozapine

Blocks dopamine receptors; also blocks serotonin, muscarinic, and histamine receptors Reserved only for treatmentresistant schizophrenia because of adverse effects

does not have EPS

Classes of Medication for Psychosis (cont)

В. Blocks serotonin receptors; also slightly blocks

Quetiapine dopamine receptors

(Seroq-Used to treat schizophrenia and bipolar disorder; also used in the behavioural and psychological symptoms of uel®)

dementia (BPSD)

Others atypicals:Olanzapine (Zyprexa®) Risperidone (Risperdal®)

Paliperidone (Invega®) Ziprasidone (Zeldox®)

Miscellaneous

A.Aripiprazole

Partial dopamine and serotonin agonist; also serotonin

antagonist at other sites

(Abilify®)

Used for schizophrenia, bipolar, and depression (as an

add-on)

Fewer side effects but not as effective as others Will also see combinations of antidepressants, mood

stabilizers, and benzodiazepines

Antipsychotics are not a cure for schizophrenia - but they are

effective if continued

Medications are only effective for as long as the client takes the

medication - no dependence

They often have multiple undesirable side effects:

Agranulocytosis, EPS, weight gain, sedation, dyskinesias, anticholinergic effects

Effectiveness can lead to discontinuation

Seizure disorders

Seizure

a disturbance of electrical activity in the brain that can affect consciousness, motor activity, and sensation Not every seizure consists of convulsions

Many types starting with local (one section) or generalized

(whole brain)

By kjaniskevich

Published 1st March, 2021. Last updated 1st March, 2021.

Page 10 of 15.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

by kjaniskevich via cheatography.com/132444/cs/26822/

Seizure disorders (cont)

Convul- involuntary, violent spasms of the large skeletal muscles

sions of face, neck, arms, and legs

Epilepsy a disorder characterized by recurrent seizures

Those seizures can be any type

You can experience a seizure without having epilepsy

Causes of Infectious diseases seizures Trauma to head

Metabolic disorders like dehydration, hypoglycemia,

kidney disease, electrolyte imbalances Vascular diseases causing lack of oxygen Pediatric disorders febrile seizures

Tumours

Threshold

Seizure the balance between excitatory and inhibitory forces in

the brain which affect how susceptible a person is

to seizures

Important: many drugs that alter CNS activity can lower the seizure threshold – this leads to many potential drug

interactions

Classes of Medication for seizure disorders

Drugs that potentiate GABA

a.Barbiturates Potentiate GABA (inhibitory) and suppress the firing

ability of neurons by stimulating an influx of Cl-

CNS depressants

Takes several weeks for control May be used as monotherapy

Phenobarbital Causes least sedation

Follows CNS depression spectrum Dependence and withdrawal occur

Classes of Medication for seizure disorders (cont)

> receptors, which stimulates an influx of Cl-Work very quickly if injected (used in status

epilepticus)

Usually an adjunct to other drugs because of dependence and tolerance – reason to use

short-term only

Follow CNS depression spectrum

Diazepam As an anti-convulsant, used for short-term

seizure control, calming and relaxation

c.Miscellaneous *Primidone* – some classify as a barbiturate

Topiramate – a combo of mechanisms (blocks Na+ influx, enhances GABA at some receptors - different from benzodiazepines, and more)

Drugs that suppress Na+ influx

Desensitize Na+ channels, which prevents influx of Na+ (different from blocking or

antagonizing)

Sodium movement is a main factor that determines whether neuron will undergo an

action potential (excitation)

No dependence or tolerance

Not all require lab monitoring

In CNS action potentials Na+ > Ca+

C

By kjaniskevich

Published 1st March, 2021. Last updated 1st March, 2021.

Page 11 of 15.

Sponsored by **CrosswordCheats.com** Learn to solve cryptic crosswords!

http://crosswordcheats.com

by kjaniskevich via cheatography.com/132444/cs/26822/

Classes of Medication for seizure disorders (cont)		
a.Hydantoins (phenytoin and fosphenytoin)	Very common, treats many types of seizures Very narrow therapeutic range – requires monitoring LOTS of drug interactions with anticoagulants, corticosteroids, supplements; impairs oral contraceptives and some antibiotics	
b.Miscellaneous (phenytoin-like) carbamazepine, lamotrigine, valproic acid (& divalproex)	Still desensitizes sodium channels, which prevents influx of Na+ Used for absence and mixed-type seizures	

valproic acid (& divalproex)	
Drugs that suppress	Ca+ influx
a.Succinimides Ethosuximide and methsuximide	Block calcium channels, which delays Ca+ influx, which depresses the activity of neurons in the motor cortex Calcium influx is not as dominant as sodium influx In CNS action potentials Na+ > Ca+
b. Gabapentin	- unknown mechanism for anticonvulsant activity Is shaped like GABA (hence the name), but does NOT bind to GABA receptors Binds to calcium channels to reduce calcium influx Used mostly for neuropathic pain and migraines now

We use drugs that can:
a.Stimulate an influx of CI- ions, which potentiates GABA
b.Delay an influx of Na+
c.Delay an influx of Ca+
In CNS action potentials Na+ > Ca+

Drug Classes for Pain (cont) a.Opioid Work in spinal cord and brain (CNS) to alter analgesics perception of pain Moderate to severe pain Some used for anesthesia Different levels of potency/efficacy - all are compared to morphine (Gold Standard) Oral: Systemic effects all over the body at opioid Routes for administrreceptors Parenteral: Localized or systemic - depends how we ation Morphine Routes: PO, IV, IM, SC, rectal, epidural, intrathecal Remember - 5mg PO ‡ 5mg IV Duration of action: PO - 4 to 7h IV - 4 to 5h Epidural - 4 to 24h Opioid Physical dependence lasts 7 days dependency Psychological dependence can last many months or Often, patients switch from IV and inhalation forms to oral form called methadone Methadone A long lasting opioid that avoids withdrawal symptoms by stimulating receptors, with no euphoria Has a long t1/2 - most only need to dose once daily (still patient variation)

Drug Classes for Pain

Analgesics

By kjaniskevich

Published 1st March, 2021. Last updated 1st March, 2021. Page 12 of 15.

cheatography.com/kjaniskevich/

Sponsored by **CrosswordCheats.com**Learn to solve cryptic crosswords!
http://crosswordcheats.com

by kjaniskevich via cheatography.com/132444/cs/26822/

Drug Classes	s for Pain (cont)
opioid antagonist Naloxone and naltre- xone	Competitively binds to and blocks mu and kappa receptors Blocking opioid receptors would only biologically change something in someone taking an opioid Used to reverse opioid effects Can be a diagnostic tool
naloxone	Opioid antagonist used to reverse opioid toxicity (i.e. respiratory depression is the lethal symptom) Higher affinity for opioid receptors, therefore displaces opioid (competitive antagonist) No euphoria, no dependence or tolerance Schedule II (for emergency purposes only) Effects = instant withdrawal symptoms: Pain, hypertension, sweating, anxiety, irritability + (very uncomfortable to patient, but not life-threatening) Not a substitute for ambulatory care, but can keep someone alive longer

If opioid agonist is longer acting than naloxone (i.e.

methadone), toxicity could return

Drug Classes for Pain (cont)		
b.Non opioid analgesics	Work in peripheral tissues to prevent formation of pain impulses Most non-opioids are also effective for fever, inflammation, and analgesia Used for mild or moderate pain associated with inflammation Acetaminophen vs. NSAIDs Acetaminophen does not have anti-inflammatory properties Both have anti-pyretic and analgesic effects	
Non-steroidal anti- inflammatory drugs NSAIDs Aspirin (ASA), ibuprofen, naproxen (OTC)	Primary drugs for the treatment of mild to moderate inflammation Inhibit cyclo-oxygenase (COX), a key enzyme in the biosynthesis of prostaglandins Prostaglandins promote inflammation Reducing prostaglandins effectively reduces inflammation NSAIDs can be selective for COX-2 or non-selective ALSO anticoagulant, antipyretic, anti-inflammatory Primary use: for fever, arthritis, mild to moderate musculoskeletal pain, dysmenorrhea Some drug interactions Caution in elderly due to poor kidney function No ASA in children – Reye's Syndrome	

By **kjaniskevich**

Published 1st March, 2021. Last updated 1st March, 2021. Page 13 of 15. Sponsored by **CrosswordCheats.com**Learn to solve cryptic crosswords!
http://crosswordcheats.com

by kjaniskevich via cheatography.com/132444/cs/26822/

Drug Clas	ses for Pain (cont)
Aceta- min- ophen	Reduce fever at level of hypothalamus and dilation of peripheral blood vessels Enables sweating and dissipation of heat Primary use is to relieve mild-moderate pain and reduce fever No anti-inflammatory actions
Miscell- aneous	Focus is the CNS used for neuropathic pain
a.Gaba- pentin	while shaped similarly to GABA, does not bind to GABA receptors; binds to calcium channels and reduces calcium influx
b.Preg- abalin (Lyrica®)	reduces calcium influx at nerve terminals, which may reduce transmission of nerve pain
Cortico- steroids	Cortisol is released by adrenal glands in response to stimuli to help restore body to normal Drugs synthetically made to mimic cortisol They are anti-inflammatory and immuno-suppressive Primary use: for severe inflammation or immuno-suppression

Drug Classes for Pain (cont)	
Muscle relaxants Methocarbamol, cyclobenzaprine, baclofen, hyoscine	After sustaining an injury, muscle spasms may occur to stabilize the affected body part and prevent further damage - also generate pain Most work in brain to reduce tonic, somatic motor activity in alpha and gamma systems NOT on muscle cells NOT at neuromuscular junction
Anesthetics	A drug that causes anesthesia, reversible loss of sensation Stabilize the neuronal membrane, preventing initiation and conduction of impulses Primary use is surgery, epidurals General: a reversible loss of consciousness Local: a reversible loss of sensation for a limited region of the body while maintaining consciousness
Anti-depressants	
TCAs	Primary use is depression, moving towards chronic pain Migraines, nerve pain, fibromyalgia, etc. Neuropathic pain (due to effect on neurotransmitters)

By **kjaniskevich**

Published 1st March, 2021. Last updated 1st March, 2021.

Page 14 of 15.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

by kjaniskevich via cheatography.com/132444/cs/26822/

Drug Classes for Pain (cont)

SSRI's Selective for serotonin, less side effects than TCAs Also treat concurrent depression and anxiety disorders Citalopram, fluoxetine, May be effective for chronic fatigue, hot flashes, mostly used off-label for other pathologically similar conditions sertraline, paroxetine

Duloxetine serotonin and norepinephrine reuptake inhibitor (Cymbalta®) Now indicated for pain associated with diabetic

peripheral neuropathy, fibromyalgia, chronic low back

pain, and osteoarthritis of the knee

Also depression and generalized anxiety disorder

Anti-anxiety meds

Benzodiazepines

Not a direct MOA, more of a co-morbidity of anxiety

along with pain

Worry about tolerance and dependence with long term

Encourage PRN (as needed) use, other coping

mechanisms, counselling

Pain management is subjective and difficult to manage due to consistent change of condition, tolerance, and dependence - and racism Patient is guide to treatment

Difficult to know when to encourage more or less use of analgesics

By kjaniskevich

Published 1st March, 2021. Last updated 1st March, 2021.

Page 15 of 15.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com