

PFT ACNP Student Cheat Sheet

by xkissmekatex (kissmekate) via cheatography.com/33594/cs/10488/

Pulmonary Function Tests

Pulmonary function tests (PFTs) *Categorization of different types of lung processes (restrictive versus obstructive) *Assessment of disease severity (prognosis and preoperative evaluation) *Post-treatment evaluation of lung function.

Pulmonary Function Tests (cont)

is< 80%).

Evaluate PFT's

- 1. When evaluating a PFTs think: •expiratory flow Lung volumes •Diffusion capacity •Response to bronchodilators 2. Look for all normals everything >80%. Most smokers have normal values.
 3. Look for restrictive disease TLC< 80%. If TLC not known reflected in a proportional decrease in FEV1 and FVC (i.e., FEV1/FVC = 80% but FVC
- 4. If restrictive check DLCO for extra-thoracic or in intra-thoracic. If the decrease in DLCO is proportional to the decrease in TLC means the restriction is not due to parenchymal disease it is of extra-thoracic origin think of obesity and kyphosis. If the decrease in DLCO is disproportionately low compared to the decrease in TLC think of interstitial lung disease.
- 5. Look for obstructive FEV1 and FEV1/FVC are low (<70%).
 6. If obstructive, check the TLC, DLCO, and reaction to beta2-agonists: Emphysema if the TLC is high but the DLCO is low (alveolar disease); minimal-to-no response to beta2-agonist.
 Asthma if the DLCO is normal, or there typically is a reaction to beta2-agonist.

Pulmonary Function Tests (cont)

Obstructive recoil. Reduction in AIRFLOW.

Disease FEV1/FVC Ratio is decreased
(<70%). Difficulty exhaling,
narrowed airways, bronchoconstriction, mucus accumulation.

COPD [Emphysema, Chronic
bronchitis], Asthma.

Restrictive Difficulty taking air in from STIFF
Disease lung. Total lung capacity

decreased (< 80%). ILD, scoliosis, obesity, PNA, Fibrosis, consolidation, Tumors due to both a decreased VC and RV.

Pulmonary Function Tests

TLC (total lung capacity: VC+RV) N=80-	The volume of air in the lungs after maximum inspiration. High in obstructive (>120% hyperinflation). Low in restrictive (<80%, decreased lung
120%	volume).
FEV1 (forced expiratory volume) N=80– 120%	Total volume of air able to exhale in the first second during maximal effort. Low (<80%) in obstructive. Normal to slightly low (<80%) in restrictive (proportional to volume). Bronchodilator response >12% and 200mL increased FEV1 (+asthma vs -COPD).
VC (vital capacity)	Volume of air expelled from the lungs during a maximum expiration. Low in restrictive

By xkissmekatex (kissmekate)

Published 13th January, 2017. Last updated 16th January, 2017. Page 1 of 4. Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

(problem with lung dynamic, large airway is intact, so ILD).

cheatography.com/kissmekate/

PFT ACNP Student Cheat Sheet

by xkissmekatex (kissmekate) via cheatography.com/33594/cs/10488/

Pulmonary Function Tests (cont)

FVC (forced vital capacity)

Total volume of air able to exhale for the total duration of the test during maximal effort. Low restrictive (decreased expansion from fibrosis, tumor/cancer, consolidation, heart failure with pulmonary edema, thick pleura, effusion, cardiomegaly, chest wall issues, muscle weakness).

FEV1/FV C Ratio N=80%

Percentage of the FVC expired in one second (do the volumes, flow out of lung as expected). Low (<70%) in obstructive diseases (COPD or asthma). Normal/high (>70%) in restrictive diseases (ILD, sarcoidosis, asbestosis, CHF, MSK, neuromuscular diseases + morbid obesity).

FRC (functional

Volume of air in the lungs after a normal expiration (increase indicates hyperinflation).

residual capacity)

Pulmonary Function Tests (cont)

RVVolume of air in the lungs at (residual maximal expiration. High in volume) obstructive (dead space air, increase indicates air trapping). N=75-120% Low in restrictive. TV (tidal Volume of air breathed in a and volume) out of the lungs during quiet breathing.

Pulmonary Function Tests (cont)

DLCO Lung diffusion testing (ability (gas of the body to absorb carbon monoxide from a single exchange) N=75breath) is used to determine 120% how well oxygen passes from the alveolar space (alveolar membrane permeability) of the lungs into the blood. Low in ILD, pulmonary vascular diseases, anemia, emphysema (loss of alveolar-capillary units). Normal in chronic bronchitis, asthma (bronchoconstriction, but NO alveolar disease. Increased in problems that increase effective blood flow to the functional lung, such as heart

failure, disease alveolar hemorrhage, pulmonary infarction, and idiopathic pulmonary hemosiderosis

(IPH).

DLCO/VA

PERFUSION Diffusing capacity corrected for alveolar volume/Hct-adjusted.

By xkissmekatex (kissmekate)

Published 13th January, 2017. Last updated 16th January, 2017. Page 2 of 4.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/kissmekate/

PFT ACNP Student Cheat Sheet

by xkissmekatex (kissmekate) via cheatography.com/33594/cs/10488/

PFTs for Specific Lung Diseases

Interstitial Lung Disease Restrictive

- •Normal to increased FEV/FVC.
- •Straight or slightly convex expiratory flow-volume loop tracing.
- Proportional decrease in all lung volumes.
- •DLCO is reduced (due to thickening of the alveolar capillary interface) and is the 1st pulmonary parameter to change with disease progression

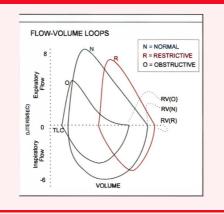
Asthma Obstructive

- PFTs may be normal if no active disease.
- •Decreased expiratory flow.
- Concave expiratory flow-volume loop tracing.
- Significant response to beta2-agonist
- •Normal or increased TLC (due to hyperinflation) and normal or reduced VC
- •DLCO is normal.

Emphysema Obstructive

- Decreased expiratory flow volume
 Concave expiratory flow-volume loop tracing.
- •Minimal response to beta2-agonist: 12% improvement or < 200mL improvement in FEV1 or FVC.
- Increased TLC, reduced VC=hyperinflation with trapped air.
- •DLCO is decreased (destruction of alveolar capillary interface--suggests emphysema) but early on maybe normal spirometry and lung volume

PFTs for Specific Lung Diseases (cont)


Chronic Bronchitis Obstructive

- Decreased expiratory flow volume
- •Concave expiratory flow-volume loop tracing.
- •Minimal response to beta2-agonist:<
- 12% improvement or < 200mL improvement in FEV1 or FVC.
- •Normal or only slight increase in TLC = normal or slightly reduced VC.
- •DLCO is normal to slightly decreased, but it is not as low as in patients with emphysema.
- •DLCO is to differentiate emphysema from chronic bronchitis and asthma. Most cases of COPD have mixed physiology with components of both chronic bronchitis and emphysema.

FEV

Flow Volume Loops

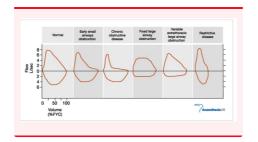
The relationship between airflow rates compared with lung volumes.

Flow Loop

Test to Order

Smoker:	Spirometry with bronchodilator
age 40+	q3-4yrs
Hx COPD	•Spirometry with bronchodi- lator q 1-2 yrs
	•Also DLCO and if FEV1 <
	50% check blood gases
	 Static lung volumes, looking
	for increased RV
Asthma:	•Spirometry with challenge/

bronchodilator q1yr
 Daily peak flows
•Written plan in place


Allergic	Correlates w/Asthma so
Rhinitis	baseline for reactive airways
	with spirometry with methac-
	holine challenge and bronch-
	odilator

Exertional Dyspnea	Spirometry with dilators & methacholine, DLCO, Pox, Exercise Testing
Chest Tightness	Spirometry with methacholine and bronchodilators
Chronic Cough	Spirometry with methacholine bronchodilators, and inspiratory flow loop
CAD	Spirometry with bronchodilato

	and HF)	
	Recurrent	Spirometry with methacholine
	PNA or	and bronchodilators
	Bronchitis	
	Neurom-	Spirometry with methacholine
	uscular	and bronchodilators, DLco
	Disease	testing, maximal respiratory
		pressures
	Occupa-	Spirometry

(smoker

exposures

By **xkissmekatex** (kissmekate)

cheatography.com/kissmekate/

Published 13th January, 2017. Last updated 16th January, 2017. Page 3 of 4. Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com