
Java-Microservices-IMP-Patterns Cheat Sheet
by Kiran P (kirandp) via cheatography.com/210594/cs/45443/

Circuit Breaker Design PatternCircuit Breaker Design Pattern

Defini​tion:Defini​tion:

The Circuit Breaker Design Pattern is used in Java micros​ervices to handle potential failures gracefully and improve the system's resili​ence. It
acts as a safety switch to prevent cascading failures in distri​buted systems.

Key Concepts:

Closed State:Closed State: Requests are allowed through. If failures reach a threshold, the circuit trips to Open.
Open State:Open State: Requests are blocked, and failures are immedi​​ately returned. This prevents overlo​​ading the failing service.
Half-Open State:Half-Open State: After a timeout, a few requests are allowed to test if the service has recovered. If succes​​sful, the circuit closes again;
otherwise, it reopens.

Benefits:

Fault Isolation:Fault Isolation: Prevents a single service failure from affecting others.
Improved Resili​ence:Improved Resili​ence: Allows systems to degrade gracefully instead of failing entirely.
Faster Recovery:Faster Recovery: Reduces load on failing services, helping them recover faster.

Frameworks like Resili​ence4j or Hystrix are commonly used to implement the Circuit Breaker pattern.

Single Database Per ServiceSingle Database Per Service

Defini​tion:Defini​tion:

The Single Database per Service design pattern is a key principle in micros​ervices archit​ecture that ensures each micros​ervice has its own
dedicated database. This pattern supports the autonomy, scalab​ility, and resilience of micros​erv​ices.

FeaturesFeatures

Service Ownership:Service Ownership: Each micros​ervice is respon​sible for managing its own database schema, data, and access logic.

Decoup​ling:Decoup​ling: Services are not tightly coupled through shared databases, ensuring changes in one service do not directly affect others.

Data Isolation:Data Isolation: Prevents direct access to a service’s data by other services. Commun​ication happens through APIs or events.

Benefits:Benefits:

Encaps​ula​tion:Encaps​ula​tion: Data access logic remains confined within the service, promoting loose coupling.
Indepe​ndent Scaling:Indepe​ndent Scaling: Each database can be optimized and scaled based on the specific service’s needs.
Technology Flexib​ility:Technology Flexib​ility: Different micros​ervices can use different types of databases (e.g., SQL, NoSQL) based on their requirements.
Fault Isolation:Fault Isolation: Database issues in one service don't propagate to others.

Challe​nges:Challe​nges:

Data Consis​tency:Data Consis​tency: Mainta​ining consis​tency across multiple services becomes complex, especially during distri​buted transactions.
Data Duplic​ation:Data Duplic​ation: Related data may need to be replicated across databases, increasing storage requirements.
Commun​ication Overhead:Commun​ication Overhead: Cross-​service data access requires inter-​service commun​ication (e.g., via APIs), which can add latency.

API Gateway Design PatternAPI Gateway Design Pattern

FeaturesFeatures

By Kiran PKiran P (kirandp)
cheatography.com/kirandp/

Published 13th January, 2025.
Last updated 13th January, 2025.
Page 1 of 6.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/kirandp/
http://www.cheatography.com/kirandp/cheat-sheets/java-microservices-imp-patterns
http://www.cheatography.com/kirandp/
https://apollopad.com

Java-Microservices-IMP-Patterns Cheat Sheet
by Kiran P (kirandp) via cheatography.com/210594/cs/45443/

API Gateway Design Pattern (cont)API Gateway Design Pattern (cont)

Routing:Routing: Routes incoming client requests to the approp​riate microservices.
Aggreg​ation:Aggreg​ation:Combines responses from multiple services to provide a single, consol​idated response.
Cross-​Cutting Concerns:Cross-​Cutting Concerns: Handles common tasks like authen​tic​ation, author​iza​tion, rate limiting, caching, logging, and monitoring.
Protocol Transl​ation:Protocol Transl​ation: Converts protocols (e.g., HTTP to gRPC) if needed

AdvantagesAdvantages

Simplifies client intera​ctions by abstra​cting service details.
Reduces client​-to​-se​rvice commun​ication complexity.
Centra​lizes concerns like security and logging, ensuring consistency.

ChallengesChallenges

Can become a single point of failure if not designed with redundancy.
May introduce latency due to added processing.
Requires proper scaling to handle high traffic.

Tools Used for Implem​ent​ation:Tools Used for Implem​ent​ation:

Netflix Zuul:Netflix Zuul: A flexible API Gateway.
Kong:Kong: An open-s​ource API Gateway with plugin support.
Spring Cloud Gateway:Spring Cloud Gateway: A Java-based API Gateway for Spring applications.
AWS API Gateway:AWS API Gateway: A managed solution by AWS.

BulkHead Design PatternBulkHead Design Pattern

Key ConceptKey Concept

The system is divided into indepe​ndent partitions (bulkh​eads), like compar​tments in a ship, to contain failures within one partition.
Each bulkhead has dedicated resources (e.g., thread pools, memory, connec​tions) to prevent resource exhaustion from affecting other parts of
the system.

Pros:Pros:

Fault Isolation:Fault Isolation: Limits the impact of failures to specific services or components.
Improved Resili​ence:Improved Resili​ence: Ensures critical parts of the system remain operat​ional even when some fail.
Resource Protec​tion:Resource Protec​tion: Prevents one service from consuming all available resources.

ChallengesChallenges

Overhead due to managing multiple resource pools.
Requires careful tuning of resource limits for optimal perfor​mance

Implem​ent​ation ToolsImplem​ent​ation Tools

Use thread pools, connection pools, or process isolationthread pools, connection pools, or process isolation to allocate resources to specific services.
Frameworks like Resili​ence4jResili​ence4j support bulkhead isolation.

Strangler Fig Design PatternStrangler Fig Design Pattern

Key Concept:Key Concept:

Inspired by the way a strangler fig tree grows around a host tree, eventually replacing it.
New features are built as indepe​ndent micros​erv​ices, while the monolithic applic​ation continues to handle legacy functionality.
Over time, the monolith is "​str​ang​led​" as its functi​onality is replaced by microservices.

ProcessProcess

By Kiran PKiran P (kirandp)
cheatography.com/kirandp/

Published 13th January, 2025.
Last updated 13th January, 2025.
Page 2 of 6.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/kirandp/
http://www.cheatography.com/kirandp/cheat-sheets/java-microservices-imp-patterns
http://www.cheatography.com/kirandp/
https://apollopad.com

Java-Microservices-IMP-Patterns Cheat Sheet
by Kiran P (kirandp) via cheatography.com/210594/cs/45443/

Strangler Fig Design Pattern (cont)Strangler Fig Design Pattern (cont)

Identify Modules:Identify Modules: Analyze the monolith and identify modules or functi​ona​lities to migrate.
Build New Services:Build New Services: Create micros​ervices for new features or existing modules.
Redirect Traffic:Redirect Traffic: Use an API Gateway or routing layer to direct requests to the approp​riate service (new micros​ervice or monolith).
Decomm​ission Monolith:Decomm​ission Monolith: Gradually phase out the monolith as its respon​sib​ilities are fully transi​tioned to microservices.

ProsPros

Increm​ental Migration:Increm​ental Migration: Avoids the risks of a complete rewrite.
Reduced Downtime:Reduced Downtime: Allows the system to remain operat​ional during migration.
Modern​iza​tion:Modern​iza​tion: Enables the adoption of new techno​logies and practices.

Challe​nges:Challe​nges:

Complexity in Integr​ation:Complexity in Integr​ation: Requires careful coordi​nation between the monolith and microservices.
Extended Migration Time:Extended Migration Time: The process can take a long time to complete.

The Strangler Fig pattern allows for a smooth and low-risk transition to micros​ervices while contin​uously delivering value.

Fallback Design PatternFallback Design Pattern

Defini​tion:Defini​tion:

The Fallback Design PatternFallback Design Pattern in micros​ervices is a resilience pattern used to provide a backup response or altern​ative action when a service fails
or is unavai​lable. It ensures that the system remains partially functi​onal, offering a better user experience during failures.

Features:Features:

Backup Response:Backup Response: Provides a default or cached response when the primary service fails.
Graceful Degrad​ation:Graceful Degrad​ation: Allows the applic​ation to continue operating with limited functi​onality instead of crashing.
User Impact Mitiga​tion:User Impact Mitiga​tion: Minimizes disrup​tions for users by avoiding complete failures.

Pros:Pros:

Improves system resilience and user experience.
Reduces the impact of temporary service failures.
Supports fault-​tol​erant design in distri​buted systems.

ChallengesChallenges

Designing meaningful fallback responses can be complex.
Fallback logic must be carefully tested to avoid unexpected behavior.

Frameworks like Resili​ence4j or Hystrix make implem​enting fallbacks.

Command Query Respon​sib​ility Segreg​ationCommand Query Respon​sib​ility Segreg​ation

DefinitionDefinition

The CQRSCQRS (Command Query Respon​sib​ility Segreg​ation) design pattern in micros​ervices separates the operations
that modify data (commands) from the operations that read data (queries).
This pattern optimizes perfor​mance, scalab​ility, and flexib​ility in handling complex business requir​ements.

Key ConceptsKey Concepts

Commands:Commands: Handle write operations (e.g., creating, updating, or deleting data).
Queries:Queries: Handle read operations to retrieve data.
Separate Models:Separate Models: Use distinct data models for write (trans​act​ional consis​tency) and read (optimized for queries).

By Kiran PKiran P (kirandp)
cheatography.com/kirandp/

Published 13th January, 2025.
Last updated 13th January, 2025.
Page 3 of 6.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/kirandp/
http://www.cheatography.com/kirandp/cheat-sheets/java-microservices-imp-patterns
http://www.cheatography.com/kirandp/
https://apollopad.com

Java-Microservices-IMP-Patterns Cheat Sheet
by Kiran P (kirandp) via cheatography.com/210594/cs/45443/

Command Query Respon​sib​ility Segreg​ation (cont)Command Query Respon​sib​ility Segreg​ation (cont)

ProsPros

Scalab​ility:Scalab​ility: Scale read and write operations independently.
Perfor​mance:Perfor​mance: Optimize query responses with denorm​alized or precom​puted data.
Flexib​ility:Flexib​ility: Tailor read and write models to different requirements.

ChallengesChallenges

Increased complexityIncreased complexity due to managing separate models and synchronization.
Potential for eventual consis​tencyPotential for eventual consis​tency between write and read models.

Use frameworks like Axon or Spring Boot to simplify CQRS implem​ent​ation.

Saga Design PatternSaga Design Pattern

DefinitionDefinition

The Saga Design PatternSaga Design Pattern is a micros​ervices design pattern for managing distri​buted transactions
in a consistent and reliable way without using a centra​lized transa​ction coordi​nator.
It breaks down a transa​ction into a sequence of smaller,
indepe​ndent steps (local transa​ctions) across services, ensuring eventual consistency.

ConceptsConcepts

Choreo​graphy:Choreo​graphy: Each service indepe​ndently performs its local transa​ction and publishes events for others to react to.
Orches​tra​tion:Orches​tra​tion: A central orches​trator coordi​nates the sequence of steps by invoking the necessary services.
Compen​sation:Compen​sation: If a failure occurs, previously completed steps are undone using compen​sating actions.

ProsPros

Enables distri​buted transa​ctions without locking resources.
Improves system resilience and scalability.
Works well in asynch​ronous and event-​driven architectures.

Implem​ent​ation ToolsImplem​ent​ation Tools

Use tools like Kafka or RabbitMQ for event-​driven sagas.
Frameworks like Axon or Camunda help with orches​tra​tion.

The Saga pattern ensures that distri​buted transa​ctions are managed reliably while mainta​ining the indepe​ndence of micros​erv​ices.

Messenging Design PatternMessenging Design Pattern

DefinitionDefinition

The Messaging Design Pattern in micros​ervices facili​tates asynch​ronous commun​ication between services using message brokers or event
buses. It decouples services, enabling them to operate indepe​ndently while improving scalab​ility and resili​ence.

Important ConceptsImportant Concepts

Asynch​ronous Commun​ica​tion:Asynch​ronous Commun​ica​tion: Services exchange messages without waiting for immediate responses.
Message Broker:Message Broker: A central component (e.g., Kafka, RabbitMQ, AWS SQS) routes messages between producers (senders) and consumers
(receivers).
Decoup​ling:Decoup​ling: Producers and consumers are indepe​ndent, knowing only about the message format, not each other.

ProsPros

Scalab​ility:Scalab​ility: Services can process messages at their own pace.
Fault Tolerance:Fault Tolerance: Messages can be retried or queued if a service is unavailable.
Decoup​ling:Decoup​ling: Changes in one service don't require changes in others.

ChallengesChallenges

http://www.cheatography.com/
http://www.cheatography.com/kirandp/
http://www.cheatography.com/kirandp/cheat-sheets/java-microservices-imp-patterns

By Kiran PKiran P (kirandp)
cheatography.com/kirandp/

Published 13th January, 2025.
Last updated 13th January, 2025.
Page 4 of 6.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/kirandp/
https://apollopad.com

Java-Microservices-IMP-Patterns Cheat Sheet
by Kiran P (kirandp) via cheatography.com/210594/cs/45443/

Messenging Design Pattern (cont)Messenging Design Pattern (cont)

Message Ordering:Message Ordering: Ensuring the correct sequence of message processing can be complex.
Message Duplic​ation:Message Duplic​ation: Requires handling duplicate messages for idempotency.
Operat​ional Overhead:Operat​ional Overhead: Managing message brokers adds complexity.

Implem​ent​ation ToolsImplem​ent​ation Tools

Use messaging protocols like AMQP, MQTT, or Kafka Streams.
Ensure messages are durable, idempo​tent, and well-s​tru​ctured (e.g., JSON, Avro).

The Messaging pattern is fundam​ental in micros​ervices for building resilient, scalable, and loosely coupled systems.

By Kiran PKiran P (kirandp)
cheatography.com/kirandp/

Published 13th January, 2025.
Last updated 13th January, 2025.
Page 6 of 6.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/kirandp/
http://www.cheatography.com/kirandp/cheat-sheets/java-microservices-imp-patterns
http://www.cheatography.com/kirandp/
https://apollopad.com

	Java-Microservices-IMP-Patterns Cheat Sheet - Page 1
	Circuit Breaker Design Pattern
	Single Database Per Service
	API Gateway Design Pattern

	Java-Microservices-IMP-Patterns Cheat Sheet - Page 2
	BulkHead Design Pattern
	Strangler Fig Design Pattern

	Java-Microservices-IMP-Patterns Cheat Sheet - Page 3
	Fallback Design Pattern
	Command Query Respon­sib­ility Segreg­ation

	Java-Microservices-IMP-Patterns Cheat Sheet - Page 4
	Saga Design Pattern
	Messenging Design Pattern

	Java-Microservices-IMP-Patterns Cheat Sheet - Page 5

