
Java-Microservices-IMP-Patterns Cheat Sheet
by Kiran P (kirandp) via cheatography.com/210594/cs/45443/

Circuit Breaker Design PatternCircuit Breaker Design Pattern

Definition:Definition:

The Circuit Breaker Design Pattern is used in Java microservices to handle potential failures gracefully and improve the system's resilience. It
acts as a safety switch to prevent cascading failures in distributed systems.

Key Concepts:

Closed State:Closed State: Requests are allowed through. If failures reach a threshold, the circuit trips to Open.
Open State:Open State: Requests are blocked, and failures are immediately returned. This prevents overloading the failing service.
Half-Open State:Half-Open State: After a timeout, a few requests are allowed to test if the service has recovered. If successful, the circuit closes again;
otherwise, it reopens.

Benefits:

Fault Isolation:Fault Isolation: Prevents a single service failure from affecting others.
Improved Resilience:Improved Resilience: Allows systems to degrade gracefully instead of failing entirely.
Faster Recovery:Faster Recovery: Reduces load on failing services, helping them recover faster.

Frameworks like Resilience4j or Hystrix are commonly used to implement the Circuit Breaker pattern.

Single Database Per ServiceSingle Database Per Service

Definition:Definition:

The Single Database per Service design pattern is a key principle in microservices architecture that ensures each microservice has its own
dedicated database. This pattern supports the autonomy, scalability, and resilience of microservices.

FeaturesFeatures

Service Ownership:Service Ownership: Each microservice is responsible for managing its own database schema, data, and access logic.

Decoupling:Decoupling: Services are not tightly coupled through shared databases, ensuring changes in one service do not directly affect others.

Data Isolation:Data Isolation: Prevents direct access to a service’s data by other services. Communication happens through APIs or events.

Benefits:Benefits:

Encapsulation:Encapsulation: Data access logic remains confined within the service, promoting loose coupling.
Independent Scaling:Independent Scaling: Each database can be optimized and scaled based on the specific service’s needs.
Technology Flexibility:Technology Flexibility: Different microservices can use different types of databases (e.g., SQL, NoSQL) based on their requirements.
Fault Isolation:Fault Isolation: Database issues in one service don't propagate to others.

Challenges:Challenges:

Data Consistency:Data Consistency: Maintaining consistency across multiple services becomes complex, especially during distributed transactions.
Data Duplication:Data Duplication: Related data may need to be replicated across databases, increasing storage requirements.
Communication Overhead:Communication Overhead: Cross-service data access requires inter-service communication (e.g., via APIs), which can add latency.

API Gateway Design PatternAPI Gateway Design Pattern

FeaturesFeatures

By Kiran PKiran P (kirandp)
cheatography.com/kirandp/

Published 13th January, 2025.
Last updated 13th January, 2025.
Page 1 of 6.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/kirandp/
http://www.cheatography.com/kirandp/cheat-sheets/java-microservices-imp-patterns
http://www.cheatography.com/kirandp/
https://apollopad.com

Java-Microservices-IMP-Patterns Cheat Sheet
by Kiran P (kirandp) via cheatography.com/210594/cs/45443/

API Gateway Design Pattern (cont)API Gateway Design Pattern (cont)

Routing:Routing: Routes incoming client requests to the appropriate microservices.
Aggregation:Aggregation:Combines responses from multiple services to provide a single, consolidated response.
Cross-Cutting Concerns:Cross-Cutting Concerns: Handles common tasks like authentication, authorization, rate limiting, caching, logging, and monitoring.
Protocol Translation:Protocol Translation: Converts protocols (e.g., HTTP to gRPC) if needed

AdvantagesAdvantages

Simplifies client interactions by abstracting service details.
Reduces client-to-service communication complexity.
Centralizes concerns like security and logging, ensuring consistency.

ChallengesChallenges

Can become a single point of failure if not designed with redundancy.
May introduce latency due to added processing.
Requires proper scaling to handle high traffic.

Tools Used for Implementation:Tools Used for Implementation:

Netflix Zuul:Netflix Zuul: A flexible API Gateway.
Kong:Kong: An open-source API Gateway with plugin support.
Spring Cloud Gateway:Spring Cloud Gateway: A Java-based API Gateway for Spring applications.
AWS API Gateway:AWS API Gateway: A managed solution by AWS.

BulkHead Design PatternBulkHead Design Pattern

Key ConceptKey Concept

The system is divided into independent partitions (bulkheads), like compartments in a ship, to contain failures within one partition.
Each bulkhead has dedicated resources (e.g., thread pools, memory, connections) to prevent resource exhaustion from affecting other parts of
the system.

Pros:Pros:

Fault Isolation:Fault Isolation: Limits the impact of failures to specific services or components.
Improved Resilience:Improved Resilience: Ensures critical parts of the system remain operational even when some fail.
Resource Protection:Resource Protection: Prevents one service from consuming all available resources.

ChallengesChallenges

Overhead due to managing multiple resource pools.
Requires careful tuning of resource limits for optimal performance

Implementation ToolsImplementation Tools

Use thread pools, connection pools, or process isolationthread pools, connection pools, or process isolation to allocate resources to specific services.
Frameworks like Resilience4jResilience4j support bulkhead isolation.

Strangler Fig Design PatternStrangler Fig Design Pattern

Key Concept:Key Concept:

Inspired by the way a strangler fig tree grows around a host tree, eventually replacing it.
New features are built as independent microservices, while the monolithic application continues to handle legacy functionality.
Over time, the monolith is "strangled" as its functionality is replaced by microservices.

ProcessProcess

By Kiran PKiran P (kirandp)
cheatography.com/kirandp/

Published 13th January, 2025.
Last updated 13th January, 2025.
Page 2 of 6.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/kirandp/
http://www.cheatography.com/kirandp/cheat-sheets/java-microservices-imp-patterns
http://www.cheatography.com/kirandp/
https://apollopad.com

Java-Microservices-IMP-Patterns Cheat Sheet
by Kiran P (kirandp) via cheatography.com/210594/cs/45443/

Strangler Fig Design Pattern (cont)Strangler Fig Design Pattern (cont)

Identify Modules:Identify Modules: Analyze the monolith and identify modules or functionalities to migrate.
Build New Services:Build New Services: Create microservices for new features or existing modules.
Redirect Traffic:Redirect Traffic: Use an API Gateway or routing layer to direct requests to the appropriate service (new microservice or monolith).
Decommission Monolith:Decommission Monolith: Gradually phase out the monolith as its responsibilities are fully transitioned to microservices.

ProsPros

Incremental Migration:Incremental Migration: Avoids the risks of a complete rewrite.
Reduced Downtime:Reduced Downtime: Allows the system to remain operational during migration.
Modernization:Modernization: Enables the adoption of new technologies and practices.

Challenges:Challenges:

Complexity in Integration:Complexity in Integration: Requires careful coordination between the monolith and microservices.
Extended Migration Time:Extended Migration Time: The process can take a long time to complete.

The Strangler Fig pattern allows for a smooth and low-risk transition to microservices while continuously delivering value.

Fallback Design PatternFallback Design Pattern

Definition:Definition:

The Fallback Design PatternFallback Design Pattern in microservices is a resilience pattern used to provide a backup response or alternative action when a service fails
or is unavailable. It ensures that the system remains partially functional, offering a better user experience during failures.

Features:Features:

Backup Response:Backup Response: Provides a default or cached response when the primary service fails.
Graceful Degradation:Graceful Degradation: Allows the application to continue operating with limited functionality instead of crashing.
User Impact Mitigation:User Impact Mitigation: Minimizes disruptions for users by avoiding complete failures.

Pros:Pros:

Improves system resilience and user experience.
Reduces the impact of temporary service failures.
Supports fault-tolerant design in distributed systems.

ChallengesChallenges

Designing meaningful fallback responses can be complex.
Fallback logic must be carefully tested to avoid unexpected behavior.

Frameworks like Resilience4j or Hystrix make implementing fallbacks.

Command Query Responsibility SegregationCommand Query Responsibility Segregation

DefinitionDefinition

The CQRSCQRS (Command Query Responsibility Segregation) design pattern in microservices separates the operations
that modify data (commands) from the operations that read data (queries).
This pattern optimizes performance, scalability, and flexibility in handling complex business requirements.

Key ConceptsKey Concepts

Commands:Commands: Handle write operations (e.g., creating, updating, or deleting data).
Queries:Queries: Handle read operations to retrieve data.
Separate Models:Separate Models: Use distinct data models for write (transactional consistency) and read (optimized for queries).

By Kiran PKiran P (kirandp)
cheatography.com/kirandp/

Published 13th January, 2025.
Last updated 13th January, 2025.
Page 3 of 6.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/kirandp/
http://www.cheatography.com/kirandp/cheat-sheets/java-microservices-imp-patterns
http://www.cheatography.com/kirandp/
https://apollopad.com

Java-Microservices-IMP-Patterns Cheat Sheet
by Kiran P (kirandp) via cheatography.com/210594/cs/45443/

Command Query Responsibility Segregation (cont)Command Query Responsibility Segregation (cont)

ProsPros

Scalability:Scalability: Scale read and write operations independently.
Performance:Performance: Optimize query responses with denormalized or precomputed data.
Flexibility:Flexibility: Tailor read and write models to different requirements.

ChallengesChallenges

Increased complexityIncreased complexity due to managing separate models and synchronization.
Potential for eventual consistencyPotential for eventual consistency between write and read models.

Use frameworks like Axon or Spring Boot to simplify CQRS implementation.

Saga Design PatternSaga Design Pattern

DefinitionDefinition

The Saga Design PatternSaga Design Pattern is a microservices design pattern for managing distributed transactions
in a consistent and reliable way without using a centralized transaction coordinator.
It breaks down a transaction into a sequence of smaller,
independent steps (local transactions) across services, ensuring eventual consistency.

ConceptsConcepts

Choreography:Choreography: Each service independently performs its local transaction and publishes events for others to react to.
Orchestration:Orchestration: A central orchestrator coordinates the sequence of steps by invoking the necessary services.
Compensation:Compensation: If a failure occurs, previously completed steps are undone using compensating actions.

ProsPros

Enables distributed transactions without locking resources.
Improves system resilience and scalability.
Works well in asynchronous and event-driven architectures.

Implementation ToolsImplementation Tools

Use tools like Kafka or RabbitMQ for event-driven sagas.
Frameworks like Axon or Camunda help with orchestration.

The Saga pattern ensures that distributed transactions are managed reliably while maintaining the independence of microservices.

Messenging Design PatternMessenging Design Pattern

DefinitionDefinition

The Messaging Design Pattern in microservices facilitates asynchronous communication between services using message brokers or event
buses. It decouples services, enabling them to operate independently while improving scalability and resilience.

Important ConceptsImportant Concepts

Asynchronous Communication:Asynchronous Communication: Services exchange messages without waiting for immediate responses.
Message Broker:Message Broker: A central component (e.g., Kafka, RabbitMQ, AWS SQS) routes messages between producers (senders) and consumers
(receivers).
Decoupling:Decoupling: Producers and consumers are independent, knowing only about the message format, not each other.

ProsPros

Scalability:Scalability: Services can process messages at their own pace.
Fault Tolerance:Fault Tolerance: Messages can be retried or queued if a service is unavailable.
Decoupling:Decoupling: Changes in one service don't require changes in others.

ChallengesChallenges

http://www.cheatography.com/
http://www.cheatography.com/kirandp/
http://www.cheatography.com/kirandp/cheat-sheets/java-microservices-imp-patterns

By Kiran PKiran P (kirandp)
cheatography.com/kirandp/

Published 13th January, 2025.
Last updated 13th January, 2025.
Page 4 of 6.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/kirandp/
https://apollopad.com

Java-Microservices-IMP-Patterns Cheat Sheet
by Kiran P (kirandp) via cheatography.com/210594/cs/45443/

Messenging Design Pattern (cont)Messenging Design Pattern (cont)

Message Ordering:Message Ordering: Ensuring the correct sequence of message processing can be complex.
Message Duplication:Message Duplication: Requires handling duplicate messages for idempotency.
Operational Overhead:Operational Overhead: Managing message brokers adds complexity.

Implementation ToolsImplementation Tools

Use messaging protocols like AMQP, MQTT, or Kafka Streams.
Ensure messages are durable, idempotent, and well-structured (e.g., JSON, Avro).

The Messaging pattern is fundamental in microservices for building resilient, scalable, and loosely coupled systems.

By Kiran PKiran P (kirandp)
cheatography.com/kirandp/

Published 13th January, 2025.
Last updated 13th January, 2025.
Page 6 of 6.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/kirandp/
http://www.cheatography.com/kirandp/cheat-sheets/java-microservices-imp-patterns
http://www.cheatography.com/kirandp/
https://apollopad.com

	Java-Microservices-IMP-Patterns Cheat Sheet - Page 1
	Circuit Breaker Design Pattern
	Single Database Per Service
	API Gateway Design Pattern

	Java-Microservices-IMP-Patterns Cheat Sheet - Page 2
	BulkHead Design Pattern
	Strangler Fig Design Pattern

	Java-Microservices-IMP-Patterns Cheat Sheet - Page 3
	Fallback Design Pattern
	Command Query Responsibility Segregation

	Java-Microservices-IMP-Patterns Cheat Sheet - Page 4
	Saga Design Pattern
	Messenging Design Pattern

	Java-Microservices-IMP-Patterns Cheat Sheet - Page 5

