Solving Problems Using Linear Equations

Worked Example 6:

Mira is twice Sanjin's age. How old are Mira and Sanjin now if in 10 years the sum of their ages will be 89. Use s to represent Sanjin's age.
Sanjin's Age: s Mira's present age: 2 s
In 10 years:
Sanjin $=s+10$ Mira's age $=2 s+10$
$(s+10)+(2 s+10)=89$
$3 s+20=89$
$3 \mathrm{~s}=69$
$\mathrm{s}=23$
$2 \mathrm{~s}=2 \times 23=46$
Sanjin is 23 years old and Mira is 46 years old. In 10 years they will be 33 and 56 old respectively; $33+56=89$

Distance and Midpoint

Distance Formula	Midpoint Formula
The distance, d,	The midpoint $\mathrm{M}(\mathrm{x}, \mathrm{y})$
between any two	between 2 points
Cartesian coordinates	$(\mathrm{x} 1, \mathrm{y} 1)$ and $(\mathrm{x} 2, \mathrm{y} 2)$
$(\mathrm{x} 1, \mathrm{y} 1)$ and $(\mathrm{x} 2, \mathrm{y} 2)$ is:	is given by:
$\mathrm{d}=$	$\mathrm{M}(\mathrm{x}, \mathrm{y})=$

Gradient

The gradient of a line can be found by the ratio of the vertical rise to the horizontal run between any two points on the line.
Gradient $\mathrm{AB}=$ (vertical rise)/(horizontal run)
The letter m is used to represent the gradient.
$\mathbf{y}=\mathbf{m x}+\mathrm{b}$
$\mathrm{m}=$ (rise)/(run)
$=$ (change in y-value)/(change in x-value)
$=(y 2-y 1) /(x 2-x 1)$

Linear Graphs: Gradient and Y-Intercept

The gradient-intercept form:

$y=m x+b$, where m is the gradient and b is the y intercept.
The general form:
$a x+b y+c=0$, where a, b and c are constants and $a \neq 0, b \neq 0$.
In this equation, the gradient $m=(-a) /(b)$ and the y-intercept $=(-c) /(b)$ can be found by rearranging the equation to make y the subject.

Linear Graphs: Gradient and Y-Intercept (cont)

Worked Example 15

(a) $y=-3 x+2$
gradient $=-3$
y-intercept: $(0,2)$
(b) $y=x-1$
$=1 x+(-1)$
gradient =1
y-intercept: $(0,-1)$
(c) $2 y=5 x-4$
$y=(5) /(2) x-2$
gradient $=(5) /(2)$
y-intercept: $(0,-2)$
(d) $y+2 x=6$
$y=6-2 x$
$y=-2 x+6$
gradient: -2
y-intercept: $(0,6)$

Sketching Linear Graphs

Graphing using the y-intercept and gradient
There is no need to plot a number of points to graph linear relationships. Because only 2 points are needed to define a line, use the y intercept as one point on the graph and the gradient, m to locate the second point. Once 2 points are known, a straight line can be drawn through them.
Sketching other Linear Graphs, $y=m x+b, b \neq$ 0
If the y-intercept is not the origin, then first identify the y-intercept from the equation before using the gradient to find the second point.
Using the equation $y=m x+b$ and substituting $x=$ 0 , you get $y=b$.
$x=0$ is the $x=$ coordinate of a point on the y axis, so b is the y-value at the point at the point at which the graph crosses the y-axis. This is the y-intercept

Worked Example 17

Use the y-intercept and the gradient to sketch the graph of $y=2 x+1$
y-intercept: $(0,1)$
Gradient = 2
$=(2) /(1)=($ rise $) /($ run $)$

Published 12th November, 2017.

Last updated 12th November, 2017.
Page 1 of 1 .

Parallel and Perpendicular Lines

Worked Example 19

Find the gradient of the line parallel to each of the following
(a) $y=2 x-5$
$\mathrm{m}=2$
Any parallel line will have a gradient of 2 .
(b) $2 x+3 y=6$
$2 x-2 x+3 y=6-2 x$
$(3 y) /(3)=-(2) /(3) x+(6) /(3)$
$y=-(2) /(3) x+2$
$m 1=-(2) /(3)$
Any parallel line will have a gradient of - (2)/(3).

Worked Example 20

Find the gradient of a line perpendicular to each of the following
(a) $y=4 x+3$
$m 1=4$
$m 2=-(1) /(m 1)$
$=-(1) /(4)$
(b) $3 x-5 y=10$
$3 x-3 x-5 y=10-3 x$
$-5 y=-3 x+10$
$(-5 y) /(-5)=(-3 x) /(-5)+(10) /(-5)$
$y=(3) /(5) x-2 m 1=(3) /(5)$
$\mathrm{m} 2=-(1) /(\mathrm{m} 1)=-(5) /(3)$

By kira

cheatography.com/kira/

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

