
OOP key terms and principles Cheat Sheet
by kidchai via cheatography.com/191329/cs/39762/

OOPOOP

Object-oriented programming is a model that organizes software
design around objects which interact with each other.

Basic termsBasic terms

ClassClass

Data type acting like blueprint for individual objects, attributes, and
methods. And rules for interacting with this entity

ObjectsObjects

Instances of class created with specifically defined data. Object has
a state (fields) and behavior (methods).

MethodsMethods

Functions describing behaviors of object.

AttributesAttributes

Defined in class template and represent state of object. Object fields.

Abstract Class | InterfaceAbstract Class | Interface

 Abstract ClassAbstract Class InterfaceInterface

Describes Attributes,
methods

Methods

For classes With close
connections
(inheritance)

That could have nothing in
common

Multiple
Inheritance

 

Key words Implements
interface
Extends class

Extends interface

Attributes  

Methods
without realis‐
ation

 (abstract
keyword)



Methods with
realisation

   (default keyword)

Constructor  

Access
modifiers

any public (default), private
for methods with realisation

 

Inheritance ( “is-a” relationship)Inheritance ( “is-a” relationship)

We can create a new class based on existing class. The new class
can reuse the code and behavior of the ancestor class, and it can
also add new features or modify the existing behavior.
Types:Types:
• Single (one parent, one child)
• Multi-level (child is created from another child)
• Multiple (many parents, one child)
• Hierarchical (one parent, many children)
• Hybrid (child extend several parents, where one or more of them is
a combination of different types of inheritance)

Encapsulation (What happens in Vegas...)Encapsulation (What happens in Vegas...)

By encapsulating a class's variables, only the methods of the class
can access them. It protects the data from external access or modifi‐
cation.

PolymorphismPolymorphism

Subclasses can define their own behaviors and yet share some of
the same functionality of the parent class.

Compile time polymorphism -- Method overloadingCompile time polymorphism -- Method overloading
Class can have more than one method with the same name, but with
different parameters
Run time polymorphism - Method overridingRun time polymorphism - Method overriding
An instance method in a subclass with the same signature (name,
plus the number and the type of its parameters) and return type as
an instance method in the superclass overrides the superclass's
method.

AbstractionAbstraction

We exposing only an object's relevant details to the outside world.
And hiding the implementation details. Reduces the code's
complexity and makes it easier to use.

Not only InheritanceNot only Inheritance

CompositionComposition “has-a” (strong connection)

Building has a room. Containing object owns it. Objects' lifecycles
are tied (if we destroy the owner object, its members also will be
destroyed with it)

AggregationAggregation “has-a” (medium connection)

Сar and its wheels. We can take off the wheels, and they'll still exist.
Doesn't involve owning. Lifecycles of the objects aren't tied: every
one of them can exist independently of each other.

AssociationAssociation objects “know” each other (weak connection)

By kidchaikidchai
cheatography.com/kidchai/  

Published 4th August, 2023.
Last updated 8th August, 2023.
Page 1 of 2.

 
Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/kidchai/
http://www.cheatography.com/kidchai/cheat-sheets/oop-key-terms-and-principles
http://www.cheatography.com/kidchai/
http://crosswordcheats.com


OOP key terms and principles Cheat Sheet
by kidchai via cheatography.com/191329/cs/39762/

Not only Inheritance (cont)Not only Inheritance (cont)

Mother and child. The difference with aggregation is only logical:
whether one of the objects is part of other or not.

SOLID principlesSOLID principles

Single ResponsibilitySingle Responsibility

Class should have a single, well-defined responsibility and should not
be responsible for multiple things.

Open-ClosedOpen-Closed

Software enteties (classes, modules, functions) should be open for
extension but closed for modification. You should be able to add new
functionality to class without changing its existing code.

Liskov SubstitutionLiskov Substitution

Objects of a subclass should be able to be used in the same way as
objects of parent class without issues.

Interface SegregationInterface Segregation

Classes shouldn’t have to implement interfaces that they don't need.

Dependency InversionDependency Inversion

High-level modules (i.e., classes depending on other classes) should
not depend on low-level modules. Both should depend on abstra‐
ctions. So, it's easier to change implementation of low-level module
without affecting high-level module.

 

By kidchaikidchai
cheatography.com/kidchai/  

Published 4th August, 2023.
Last updated 8th August, 2023.
Page 2 of 2.

 
Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/kidchai/
http://www.cheatography.com/kidchai/cheat-sheets/oop-key-terms-and-principles
http://www.cheatography.com/kidchai/
http://crosswordcheats.com

	OOP key terms and principles Cheat Sheet - Page 1
	OOP
	Inheritance ( “is-a” relationship)
	Basic terms
	Encapsulation (What happens in Vegas...)
	Polymorphism
	Abstract Class | Interface
	Abstraction
	Not only Inheritance

	OOP key terms and principles Cheat Sheet - Page 2
	SOLID principles


