\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{Kevin694} \pdfinfo{ /Title (basic-circuit-analysis-2.pdf) /Creator (Cheatography) /Author (Kevin694) /Subject (Basic Circuit Analysis 2 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A3A3A3} \definecolor{LightBackground}{HTML}{F3F3F3} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Basic Circuit Analysis 2 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{Kevin694} via \textcolor{DarkBackground}{\uline{cheatography.com/18728/cs/1904/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}Kevin694 \\ \uline{cheatography.com/kevin694} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 13th May, 2016.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{x{1.14471 cm} x{3.83229 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Basic Concepts (H1)}} \tn % Row 0 \SetRowColor{LightBackground} Current & I{[}A{]}=Q{[}C{]}/t{[}s{]} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Voltage & U{[}V{]}=W{[}J{]}/Q{[}C{]} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} Power & P{[}W{]}= W / t = U * I \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} Energy & W = P * t \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} Coulomb & 1C = 6,241*10\textasciicircum{}18\textasciicircum{} elek. \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.9908 cm} x{2.9862 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Resistance (H2)}} \tn % Row 0 \SetRowColor{LightBackground} Ohm's Law & I{[}A{]} = U{[}V{]} / R{[}Ohm{]} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Resistivity & R = rho * (l{[}m{]}/A{[}m\textasciicircum{}2\textasciicircum{}{]}) \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} Power Absorbtion & P = V\textasciicircum{}2\textasciicircum{}/R = I\textasciicircum{}2\textasciicircum{}R \tn % Row Count 3 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{DC Circuits (H3)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Voltage Law (KVL):}} \newline % Row Count 1 (+ 1) The sum of all voltage drops equals the sum of al voltage rises in a mesh. \newline % Row Count 3 (+ 2) {\bf{Current Law (KCL):}} \newline % Row Count 4 (+ 1) The sum of all currents entering a closed surface equals the sum of all leaving one. \newline % Row Count 6 (+ 2) {\bf{Equivalent Resistor:}} \newline % Row Count 7 (+ 1) Rt = (R1 * R2) / (R1+R2) \newline % Row Count 8 (+ 1) (in case of 2 resistors paralllel)% Row Count 9 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{DC Circuits Analysis (H4)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Source Transformation:}} \newline % Row Count 1 (+ 1) Current and Voltage source with 1 resistor are interchangable. \newline % Row Count 3 (+ 2) I = V / R and U = I * R \newline % Row Count 4 (+ 1) {\bf{Mesh Analysis:}} \newline % Row Count 5 (+ 1) Applying KVL to a mesh. \newline % Row Count 6 (+ 1) {\bf{Nodal Analysis:}} \newline % Row Count 7 (+ 1) Applying KCL to a node.% Row Count 8 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Equivalent Circuits (H5)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Thevenin Circuit:}} \newline % Row Count 1 (+ 1) Circuits can be reduced to voltage source with resistor in serie. \newline % Row Count 3 (+ 2) Rt = Rth {\emph{(open circuit and independent sources deactivated)}} \newline % Row Count 5 (+ 2) Vth = {\emph{open}} circuit voltage \newline % Row Count 6 (+ 1) Isc = current in {\emph{short-circuit}} between a and b \newline % Row Count 7 (+ 1) {\bf{Norton Circuit:}} \newline % Row Count 8 (+ 1) Found by source transformation of Thevenin \newline % Row Count 9 (+ 1) Isc equals In \newline % Row Count 10 (+ 1) {\bf{Maximum Power Transfer:}} \newline % Row Count 11 (+ 1) Vth\textasciicircum{}2\textasciicircum{} / 4Rth \newline % Row Count 12 (+ 1) {\bf{Milliman's Theorem:}} \newline % Row Count 13 (+ 1) Multiple voltage sources with resistors can be combined into one by transformations giving one voltage source. \newline % Row Count 16 (+ 3) Vm = (G1V1 + .. + GnVn) / (G1 + .. + Gn) \newline % Row Count 17 (+ 1) Rm = 1 / (G1 + .. + Gn) \newline % Row Count 18 (+ 1) {\bf{Delta-Y Transformation:}} \newline % Row Count 19 (+ 1) Ra = (R1 * R2) / (R1 +R2 + R3) \newline % Row Count 20 (+ 1) Rb = (R2 * R3) / (R1+ R2 + R3) \newline % Row Count 21 (+ 1) Rc = (R1 * R3) / (R1+ R2 + R3) \newline % Row Count 22 (+ 1) R1 = (RaRb + RaRc + RbRc) / Rb \newline % Row Count 23 (+ 1) R2 = (RaRb + RaRc + RbRc) / Rc \newline % Row Count 24 (+ 1) R3 = (RaRb + RaRc + RbRc) / Ra% Row Count 25 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Y-Delta Transformation}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/kevin694_1396982062_image2.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Operational Amplifier (H6)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{U+ = U- and I+ = I- = 0 \newline % Row Count 1 (+ 1) {\bf{inverter:}} \newline % Row Count 2 (+ 1) Vo=-(Rf/Ri)*Vi \newline % Row Count 3 (+ 1) {\bf{summer:}} \newline % Row Count 4 (+ 1) \seqsplit{Vo=-((Rf/Ra)Va+(Rf/Rb)Vb+(Rf/Rc)Vc)}% Row Count 5 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.69218 cm} x{3.28482 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Capacitors (H8)}} \tn % Row 0 \SetRowColor{LightBackground} Capacitance & C = Q / U \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Capacitance & C = e * (A/d) \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} Capacitance parallel & Ct = C1 + C2 + .. \tn % Row Count 4 (+ 2) % Row 3 \SetRowColor{white} Capacitance series & 1 / Ct = (1/C1) + (1/C2) etc. \tn % Row Count 6 (+ 2) % Row 4 \SetRowColor{LightBackground} Energy Storage & Wc = 0.5CV\textasciicircum{}2\textasciicircum{}2 \tn % Row Count 8 (+ 2) % Row 5 \SetRowColor{white} Time-varying Current & i = dq/dt = C * dv/dt \tn % Row Count 10 (+ 2) % Row 6 \SetRowColor{LightBackground} RC time constant & tau = Rth * C \tn % Row Count 12 (+ 2) % Row 7 \SetRowColor{white} RC expression voltage & v(t) = v(oo) + {[}v(0+) - v(00){]}e\textasciicircum{}-t/tau\textasciicircum{} V \tn % Row Count 14 (+ 2) % Row 8 \SetRowColor{LightBackground} RC expression current & i(t) = i(oo) + {[}i(0+) - i(00){]}e\textasciicircum{}-t/tau\textasciicircum{} A \tn % Row Count 16 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.84149 cm} x{3.13551 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Inductors (H9)}} \tn % Row 0 \SetRowColor{LightBackground} Flux & v = N * dphi/dt \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Inductance & L {\emph{ i = N }} phi \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} Coil inductance & L = (N\textasciicircum{}2\textasciicircum{}*mu*A)/l \tn % Row Count 4 (+ 2) % Row 3 \SetRowColor{white} Inductor series & Lt = L1+ L2 + Ln \tn % Row Count 6 (+ 2) % Row 4 \SetRowColor{LightBackground} Inductor parallel & 1 / Lt = (1/L1) + (1/L2) etc. \tn % Row Count 8 (+ 2) % Row 5 \SetRowColor{white} Energy Storage & Wl=0.5Li\textasciicircum{}2\textasciicircum{} \tn % Row Count 9 (+ 1) % Row 6 \SetRowColor{LightBackground} RC time constant & tau = L / Rth \tn % Row Count 11 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.04057 cm} x{2.93643 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Alternating Current (H10)}} \tn % Row 0 \SetRowColor{LightBackground} Frequency & f {[}Hz{]} = 1 / T {[}s{]} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Angular Velocity & omega {[}rad/s{]} = 2*pi*f \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} Average Value factor & 2 / pi = 0.637 \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} Resistor Power & Pav = Vm\textasciicircum{}2\textasciicircum{} / 2R = Im\textasciicircum{}2\textasciicircum{}R / 2 \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} Effective Value (RMS) & Veff = Vm / 2\textasciicircum{}0.5\textasciicircum{} \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} Inductor Law & Xl = omega*L and Im = Vm / Xl \tn % Row Count 11 (+ 2) % Row 6 \SetRowColor{LightBackground} Capacitor Law & Xc = -1/(omega*C) \tn % Row Count 12 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Component Behavior (H10)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Resistor:}} \newline % Row Count 1 (+ 1) Current and Voltage in phase. \newline % Row Count 2 (+ 1) v=Vm * sin(omega*t+phi) \newline % Row Count 3 (+ 1) i=Im * sin(omga * t+phi) \newline % Row Count 4 (+ 1) {\bf{Inductor:}} \newline % Row Count 5 (+ 1) Voltage leads Current by 90 deg. \newline % Row Count 6 (+ 1) v=Xl * Im*cos(omega*t + phi) \newline % Row Count 7 (+ 1) i=Im*sin(omega*t + phi) \newline % Row Count 8 (+ 1) {\bf{Capacitor:}} \newline % Row Count 9 (+ 1) Current leadsVoltage by 90 deg. \newline % Row Count 10 (+ 1) v=Vm*sin(omega*t+phi) \newline % Row Count 11 (+ 1) i=omega * C * Vm * cos(omega*t + phi)% Row Count 12 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.74195 cm} x{3.23505 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{AC Circuit Analysis (H12)}} \tn % Row 0 \SetRowColor{LightBackground} Impedantie & Z=V/I \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Impedantie (2) & Z=R+jX \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} Admitantie & Y=1/Z \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} AC Current & I=(Im/2\textasciicircum{}0.5\textasciicircum{})*hoek \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} AC Voltage & V=((R * Im)/2\textasciicircum{}0.5\textasciicircum{})*hoek \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{AC Circuit Analysis (H13)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Mesh Analysis:}} \newline % Row Count 1 (+ 1) Transform current to voltage source \newline % Row Count 2 (+ 1) Use of KVL \newline % Row Count 3 (+ 1) {\bf{Nodal Analysis:}} \newline % Row Count 4 (+ 1) Transform voltage to current source \newline % Row Count 5 (+ 1) Use of KCL% Row Count 6 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{AC Y-Delta transformation (H14)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Delta-Y Transformation:}} \newline % Row Count 1 (+ 1) Za = (Z1 * Z2) / (Z1 +Z2 + Z3) \newline % Row Count 2 (+ 1) Zb = (Z2 * Z3) / (Z1 +Z2 + Z3) \newline % Row Count 3 (+ 1) Zc = (Z1 * Z3) /(Z1 +Z2 + Z3) \newline % Row Count 4 (+ 1) Z1 = (ZaZb + ZaZc + ZbZc) / Zb \newline % Row Count 5 (+ 1) Z2 = (ZaZb + ZaZc + ZbZc) / Zc \newline % Row Count 6 (+ 1) Z3 = (ZaZb + ZaZc + ZbZc) / Za% Row Count 7 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.23965 cm} x{2.73735 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Maximum Power Absorbed (H14)}} \tn % Row 0 \SetRowColor{LightBackground} The load is the Zth conjungate & Zl = Zth\textasciicircum{}*\textasciicircum{} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Max. Power Absorbed & Vth\textasciicircum{}2\textasciicircum{}/(4Rth) (Vth is RMS of {\bf{Vth}}) \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Power in AC circuits (H15)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Instantaneous Power:}} \newline % Row Count 1 (+ 1) p = V * I cos(theta) \newline % Row Count 2 (+ 1) cos(theta) = Power Factor (PF) \newline % Row Count 3 (+ 1) theta = fase spanning - fase stroom \newline % Row Count 4 (+ 1) {\bf{Reactive Power:}} \newline % Row Count 5 (+ 1) Q = V * I * sin(theta) \newline % Row Count 6 (+ 1) {\bf{Complex Power:}} \newline % Row Count 7 (+ 1) {\bf{S}}=P+jQ \newline % Row Count 8 (+ 1) {\bf{Apparent Power:}} \newline % Row Count 9 (+ 1) S=VI \newline % Row Count 10 (+ 1) 1hp = 745,7 W% Row Count 11 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.79172 cm} x{3.18528 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Transformers (H16)}} \tn % Row 0 \SetRowColor{LightBackground} Ratio & v1/v2 = N1/N2 = i2/i1 \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Reflected Impedance & {\bf{Zr}} = {\bf{V1}}/{\bf{I1}} = a\textasciicircum{}2\textasciicircum{}{\bf{Z2}} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} Current rating & kVA transformer / voltage rating \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} PhiMax & PhiM = (sqrt(2)*Vrms)/(wN) \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} coupling coefficient & k = M / sqrt(L1*L2) \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4177 cm} x{1.33664 cm} x{1.04425 cm} x{1.37841 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{5.377cm}}{\bf\textcolor{white}{tijd-fase formules}} \tn % Row 0 \SetRowColor{LightBackground} & weerstand & spoel & condensator \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Z & R & jwL & 1/(jwC) \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} R & R & 0 & 0 \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} X & 0 & wL & -1/(wC) \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} Y & 1/R & 1/(jwL) & jwC \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} G & 1/R & 0 & 0 \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} B & 0 & -1/(wL) & wC \tn % Row Count 7 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{3-Phase (H17)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Vline = sqrt(3)*Vphase \newline % Row Count 1 (+ 1) I line = sqrt(3)*Iphase% Row Count 2 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Dot rule transformer}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Primary I into dot and secondary I out of dot: \newline % Row Count 1 (+ 1) I1 and I2 both positive or negative.% Row Count 2 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}