Basic Concepts $(\mathrm{H} 1)$	
Current	$\mathrm{I}[\mathrm{A}]=\mathrm{Q}[\mathrm{C}] /[[\mathrm{s}]$
Voltage	$\mathrm{U}[\mathrm{V}]=\mathrm{W}[\mathrm{J}] / \mathrm{Q}[\mathrm{C}]$
Power	$\mathrm{P}[\mathrm{W}]=\mathrm{W} / \mathrm{t}=\mathrm{U}$ *
Energy	$\mathrm{W}=\mathrm{P} * \mathrm{t}$
Coulomb	$1 \mathrm{C}=6,241^{*} 10^{18}$ elek.

Resistance (H2)	
Ohm's Law	$\mathrm{I}[\mathrm{A}]=\mathrm{U}[\mathrm{V}] / \mathrm{R}[\mathrm{Ohm}]$
Resistivity	$\mathrm{R}=$ rho $^{*}\left(\left[[\mathrm{~m}] / \mathrm{A}\left[\mathrm{m}^{2}\right]\right)\right.$
Power Absorbtion	$\mathrm{P}=\mathrm{V}^{2} / \mathrm{R}=\mathrm{I}^{2} \mathrm{R}$

DC Circuits (H3)

Voltage Law (KVL):

The sum of all voltage drops equals the sum of al voltage rises in a mesh.

Current Law (KCL):

The sum of all currents entering a closed surface equals the sum of all leaving one.

Equivalent Resistor:

$R t=(R 1$ * $R 2) /(R 1+R 2)$
(in case of 2 resistors parallel)

DC Circuits Analysis (H4)

Source Transformation:

Current and Voltage source with 1 resistor are interchangable.
$I=V / R$ and $U=I^{*} R$
Mesh Analysis:
Applying KVL to a mesh.
Nodal Analysis:
Applying KCL to a node.

By Kevin694

cheatography.com/kevin694/

Equivalent Circuits (H5)

Thevenin Circuit:

Circuits can be reduced to voltage source with resistor in serie.
Rt $=$ Rth (open circuit and independent sources deactivated)
Vth = open circuit voltage
Isc = current in short-circuit between a and b

Norton Circuit:

Found by source transformation of Thevenin Isc equals In
Maximum Power Transfer:
Vth ${ }^{2}$ / 4Rth

Milliman's Theorem:

Multiple voltage sources with resistors can be combined into one by transformations giving one voltage source.
$V m=(G 1 V 1+. .+G n V n) /(G 1+. .+G n)$
$R m=1 /(G 1+. .+G n)$
Delta-Y Transformation:
$R a=(R 1 * R 2) /(R 1+R 2+R 3)$
$R b=(R 2 * R 3) /(R 1+R 2+R 3)$
$R c=(R 1 * R 3) /(R 1+R 2+R 3)$
$R 1=(R a R b+R a R c+R b R c) / R b$
$R 2=(R a R b+R a R c+R b R c) / R c$
$R 3=(R a R b+R a R c+R b R c) / R a$

Y-Delta Transformation

Not published yet.
Last updated 17th April, 2014.
Page 1 of 2.

Operational Amplifier (H6)
$\mathrm{U}_{+}=\mathrm{U}-$ and $\mathrm{I}+=\mathrm{I}-=0$
inverter:
$\mathrm{Vo}=-(\mathrm{Rf} / \mathrm{Ri})^{*} \mathrm{Vi}$
summer:
Vo=-((Rf/Ra)Va+(Rf/Rb)Vb+(Rf/Rc)Vc)

Capacitors (H8)	
Capacitance	$\mathrm{C}=\mathrm{Q} / \mathrm{U}$
Capacitance	$C=e^{*}(A / d)$
Capacitance parallel	$\mathrm{Ct}=\mathrm{C} 1+\mathrm{C} 2+.$.
Capacitance series	$1 / \mathrm{Ct}=(1 / \mathrm{C} 1)+(1 / \mathrm{C} 2)$ etc.
Energy Storage	$W c=0.5 C V^{2} 2$
Time-varying Current	$\mathrm{i}=\mathrm{dq} / \mathrm{dt}=\mathrm{C}^{*} \mathrm{dv} / \mathrm{dt}$
RC time constant	tau $=$ Rth * C
RC expression voltage	$\begin{aligned} & \mathrm{v}(\mathrm{t})=\mathrm{v}(\mathrm{oo})+[\mathrm{v}(0+)- \\ & \mathrm{v}(00)] \mathrm{e}^{-\mathrm{t} / \mathrm{tau}} \mathrm{~V} \end{aligned}$
RC expression current	$\begin{aligned} & i(t)=i(00)+[i(0+)- \\ & i(00)] e^{-t / t a u} A \end{aligned}$

Inductors $(\mathrm{H} 9)$	
Flux	$\mathrm{v}=\mathrm{N}^{*}$ dphi/dt
Inductance	$\mathrm{L} i=\mathrm{N}$ phi
Coil inductance	$\left.\mathrm{L}=\left(\mathrm{N}^{2}\right)^{*} \mathrm{mu} \mathrm{A}^{*} \mathrm{~A}\right) / \mathrm{I}$
Inductor series	$\mathrm{Lt}=\mathrm{L} 1+\mathrm{L} 2+\mathrm{Ln}$
Inductor parallel	$1 / \mathrm{Lt}=(1 / \mathrm{L} 1)+(1 / \mathrm{L} 2)$ etc.
Energy Storage	$\mathrm{WI}=0.5 \mathrm{Li}^{2}$
RC time constant	tau $=\mathrm{L} / \mathrm{Rth}$

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

Alternating Current (H10)	
Frequency	$\mathrm{f}[\mathrm{Hz}]=1 / \mathrm{T}[\mathrm{s}]$
Angular Velocity	omega [rad/s] = $2^{*} \mathrm{pi*}{ }^{*}$
Average Value factor	$2 / \mathrm{pi}=0.637$
Resistor Power	$\begin{aligned} & \mathrm{Pav}=\mathrm{Vm}^{2} / 2 \mathrm{R}=\mathrm{Im}^{2} \mathrm{R} / \\ & 2 \end{aligned}$
Effective Value (RMS)	Veff $=$ Vm / 20.5
Inductor Law	$\begin{aligned} & \mathrm{XI}=\text { omega* }^{\mathrm{L}} \text { and } \mathrm{Im}= \\ & \mathrm{Vm} / \mathrm{XI} \end{aligned}$
Capacitor Law	$X c=-1 /(0 m e g a * C)$

Component Behavior (H10)

Resistor:

Current and Voltage in phase.
$\mathrm{v}=\mathrm{Vm}$ * $\sin ($ omega*t+phi)
i=Im * $\sin (o m g a ~ * ~ t+p h i) ~$
Inductor:
Voltage leads Current by 90 deg.
$\mathrm{v}=\mathrm{XI}{ }^{*}$ Im* $\cos \left(o m e g a^{*} \mathrm{t}+\mathrm{phi}\right)$
i=Im*sin(omega*t + phi)

Capacitor:

Current leadsVoltage by 90 deg.
$\mathrm{v}=\mathrm{Vm}{ }^{*} \sin \left(\right.$ omega${ }^{*} \mathrm{t}+$ phi)
$i=o m e g a * C * V m * \cos \left(\right.$ omega*t $^{*}+$ phi)

AC Circuit Analysis (H12)	
Impedantie	$\mathrm{Z}=\mathrm{V} / \mathrm{I}$
Impedantie (2)	$\mathrm{Z}=\mathrm{R}+\mathrm{jX}$
Admitantie	$\mathrm{Y}=1 / \mathrm{Z}$
AC Current	$\mathrm{I}=\left(\mathrm{Im} / 2^{0.5}\right) *$ hoek
AC Voltage	$\mathrm{V}=\left((\mathrm{R} * \mathrm{Im}) / 2^{0.5}\right) * *$ hoek

By Kevin694

cheatography.com/kevin694/

AC Circuit Analysis (H13)

Mesh Analysis:

Transform current to voltage source Use of KVL

Nodal Analysis:

Transform voltage to current source Use of KCL

AC Y-Delta transformation (H14)

Delta-Y Transformation:

Za $=(Z 1$ * Z2) $/(Z 1+Z 2+Z 3)$
Zb $=(Z 2$ * Z3) $/(Z 1+Z 2+Z 3)$
Zc = (Z1 * Z3) /(Z1 +Z2 + Z3)
Z1 $=($ ZaZb + ZaZc + ZbZc) $/$ Zb
Z2 $=(Z a Z b+Z a Z c+Z b Z c) / Z c$
Z3 $=(\mathrm{ZaZb}+\mathrm{ZaZc}+\mathrm{ZbZc}) / \mathrm{Za}$

Maximum Power Absorbed (H14)	
The load is the Zth conjungate	$\mathrm{Zl}=\mathrm{Zth}^{*}$
Max. Power $\mathrm{Vth}^{2} /(4 \mathrm{Rth})(\mathrm{Vth}$ is Absorbed RMS of Vth$)$	

Power in AC circuits (H15)

Instantaneous Power:

$\mathrm{p}=\mathrm{V}$ * $\mathrm{I} \cos ($ theta)
cos(theta) = Power Factor (PF)
theta $=$ fase spanning - fase stroom
Reactive Power:
$\mathrm{Q}=\mathrm{V}$ * 1 * $\sin ($ theta)
Complex Power:
S=P+jQ
Apparent Power:
$\mathrm{S}=\mathrm{VI}$
$1 \mathrm{hp}=745,7 \mathrm{~W}$

Not published yet.
Last updated 17th April, 2014.
Page 2 of 2.

Transformers (H16)	
Ratio	$\mathrm{v} 1 / \mathrm{v} 2=\mathrm{N} 1 / \mathrm{N} 2=\mathrm{i} 2 / \mathrm{i} 1$
Reflected Impedance	$\mathbf{Z r}=\mathbf{V} 1 / \mathrm{l} 1=\mathrm{a}^{2} \mathbf{Z 2}$
Current rating	kVA transformer / voltage rating
PhiMax	$\begin{aligned} & \mathrm{PhiM}= \\ & \left(\mathrm{sqrt}(2)^{*} \mathrm{Vrms}\right) /(\mathrm{wN}) \end{aligned}$
coupling coefficient	$\mathrm{k}=\mathrm{M} / \operatorname{sqrt}\left(\mathrm{L} 1^{*} \mathrm{~L} 2\right)$

tijd-fase formules			
	weerstand	spoel	condensator
Z	R	$j w L$	$1 /(j w C)$
R	R	0	0
X	0	$w L$	$-1 /(w C)$
Y	$1 / R$	$1 /(j w L)$	$j w C$
G	$1 / R$	0	0
B	0	$-1 /(w L)$	$w C$

3-Phase (H17)

Vline $=\operatorname{sqrt}(3)^{*}$ Vphase
I line = sqrt(3)* ${ }^{*}$ phase

Dot rule transformer

Primary I into dot and secondary I out of dot: I1 and I2 both positive or negative.

Sponsored by Readability-Score.com

Measure your website readability!
https://readability-score.com

