Cheatography

UWI Comp2211 - Analysis of Algorithms Cheat Sheet by Keto via cheatography.com/183106/cs/38117/

Summations - Closed Forms					
(1)	$\sum_{k=m}^{n} c = (n-m+1)c.$	(2)	$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$		
(3)	$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$		$\sum_{k=0}^{n} a^{k} = \frac{a^{n+1} - 1}{a - 1} \text{(where } a \neq 1\text{)}$		
(5)	$\sum_{k=1}^{n} ka^{k} = \frac{a - (n+1)a^{n+1} + na^{n+2}}{(a-1)^{2}}$	(where a =	« 1).		

Summations - Rules

(1) $\sum \alpha a_{i} = c \sum a_{i}$, (2) $\sum (a_{i} + b_{i}) = \sum a_{i} + \sum b_{i}$ (3) $\sum a_{i} x^{\alpha \alpha} = x' \sum a_{i} x'$, (4) $\sum_{\alpha \alpha} a_{\alpha} = \sum_{i=\alpha}^{\infty} a_{i}$. (5) Collipsing Sums) $\hat{\sum}_{\alpha} [a_{\alpha} - a_{\alpha}] = a_{\alpha} - a_{\alpha}$ and $\hat{\sum}_{\alpha} [a_{\alpha} - a_{\alpha}] = a_{\alpha} - a_{\alpha}$.

Logarithm Rules

$$\begin{split} \log_b b^x &= x\\ b^{\log_b x} &= x\\ \log_b(xy) &= \log_b(x) + \log_b(y)\\ \log_b(x^a) &= a \cdot \log_b(x)\\ \log_k(x) &= \frac{\ln(x)}{\ln(k)} = \frac{\log_{10}(x)}{\log_{10}(k)}\\ a^{\log_b k} &= k^{\log_b a}\\ \text{Note: for AoA, } lg &= \log_2\\ e. g. \ lg \ 3 &= \frac{\log_{10}(3)}{\log_{10}(2)} \end{split}$$

By Keto

cheatography.com/keto/

Asymptotic Analysis - Common Orders of Growth

$\Theta(1)$: constant	Slowest Growth - Fastest Growth
$\Theta(\log n)$: logarithmic	
$\Theta(n)$: linear	
$\Theta(n \log n)$:	
$\Theta(n^2)$: quadratic	
$\Theta(n^k)$ (for constant k) : polynomial
$\Theta(k^n)$ (for constant k) : exponential

Mod Operations

(x + y) mod n = ((x mod n) + (y mod n)) mod n (xy) mod n = ((x mod n) × (y mod n)) mod n (x - y) mod n = ((x mod n) - (y mod n)) mod n

Master Theorem Shortcut				
Case	Condition	Result		
1	k < E	n ^E		
2	k == E	n ^ĸ lg(n)		
3	k > E	nĸ		

Fermat's Little Theorem

For any prime p, for any x:

 $x^p \equiv x \pmod{p}$

Alternatively, for any $x \neq 0$:

 $x^{p-1} \equiv 1 \pmod{p}$

Published 24th April, 2023. Last updated 24th April, 2023. Page 1 of 1.

Sponsored by Readable.com Measure your website readability! https://readable.com