

Chemistry A-Level Cheat Sheet

by keeping.it.anon via cheatography.com/208650/cs/44747/

Transition metal complexes			
Complex	Few drops NaOH/NH3	Excess NaOH	Excess NH3
pale green [Fe(H20)6] ³⁺	dirty green Fe(OH)2	-	-
green/violet [Cr(h206] ³⁺	pale green Cr(OH)3	deep green soln. [Cr(OH)6]3+	violet soln. [Cr(NH3)6] ³⁺
yellow [Fe(H2O)6] ³⁺	brown Fe(OH)2	-	-
blue [Cu(H2O)6] ²⁺	pale blue Cu(OH)2	-	deep blue soln. [Cu(NH3)4(H2O)2] ²⁺
pale pink [Mn(H2O)6] ²⁺	light brown Mn(OH)2	-	-

Test for halide ions		
Halide ion	Adding HNO3 and AgNO3	Adding NH3
Chloride	White ppt	Dissolves in dilute
Bromide	Cream ppt	Dissolves in conc.
lodide	Yellow ppt	Doesn't dissolve

HNO3 added first to the halide, then AgNO3. This forms a ppt, from which the colour can be used to identify the halide. NH3 is then added if necessary; in dilute ammonia, e.g. only chloride ions dissolves, whereas iodide ions don't dissolve at all.

Organic tests (AS)		
Alcohols	Add K2Cr2O7/H+	Orange to green for 1 st and 2 nd alcohols
Alkenes	Add bromine water	Orange to colourless
Haloal- kanes	Dissolve in ethan	ol, add water, then do the halide test

Organic tests	(A-level)	
Aldehyde/- ketone	Add 2,4-DNP (Brady's reagent)	Orange ppt forms
Aldehyde	Add Tollen's reagent	Siler mirror forms
	Add Fehling's reagent	Red ppt forms
Carboxylic acid	Add carbonate (same as AS)	CO2 forms
	Add PCI5	Steamy white fumes produced
Benzne	Add bromine water (room temp)	no reaction.
	Combustion	Burns with sooty flame

Radical Subs	titution
Conditions	UV light
Bond fission	homolytic (2 radicals formed from covalent bond)
Organic product	haloalkane
Limitations	further substitution is almost impossible to control, products have to be separated by fractional distillation or chromatography
INITIATION	Cl2 -> 2Cl*
PROPOG- ATION	CH4 + CI* -> *CH3 + HCI
	CH3 + Cl2 -> CH3Cl + Cl
TERMIN- ATION	2Cl* -> Cl2
	*CH3 +*CH3 -> C2H6
	CH3 +CI -> CH3CI

HNO3, conc. H2SO4, 50*C
penzene
3 + H2SO4 -> NO2 + + HSO4- + H2O
4- + H ⁺ -> H2SO4

Electrophilic Sub. (chlorination of benzene)		
Reagents/conditions	CI2, AICI3	
Electrophile	CI ⁺	
Organic product	chlorobenzene	
Gen. of electrphile	AICI3 + CI2 -> AICI4 + CI+	
Regen. of catalyst	AICI4" + H" -> AICI3 + HCI	

By **keeping.it.anon** cheatography.com/keeping-itanon/ Not published yet. Last updated 21st October, 2024. Page 2 of 3. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

Chemistry A-Level Cheat Sheet

by keeping.it.anon via cheatography.com/208650/cs/44747/

Electrophilic Sub. (acylation of benzene)

Reagents/conditions CH3COCI, AICI3

Electrophile CH3CO⁺

Organic product phenyl ethanone

Gen. of electrphile AlCl3 + CH3COCl -> AlCl4⁻ + CH3CO⁺

Regen. of catalyst AlCl4⁻ + H⁺ -> AlCl3 + HCl

Electrophilic Sub. (alkylation of benzene)

Reagents/conditions

CH3Cl, AlCl3

Electrophile

CH3⁺

Organic product

methyl benzene

Gen. of electrphile

CH3Cl + AlCl3 -> CH3⁺ + AlCl4⁻

Regen. of catalyst

AlCl4⁻ + H⁺ -> AlCl3 + HCl

Electrophilic Sub. (bromination of benzene)

Reagents/conditions	Br2, AlBr3
Electrophile	Br ⁺
Organic product	bromobenzene
Gen. of electrphile	AlBr3 + Br2 -> AlBr4 ⁻ + Br ⁺
Regen. of catalyst	AlBr4- + H ⁺ -> AlBr3 + HBr

Ammonium, NH4+

Add NaOH to test for NH3 Red litmus paper turns blue if present

Carbonate, CO3^2-

Add HCl to carbonate solution CO2 forms. Turns limewater cloudy

Sulphate, SO4^2-

Add BaCl2 White ppt forms if present (BaSO4)

Rate equations

Rate = $k[A]^m[B]^n$ $k = Ae^{-Ea/RT}$

ln k = -Ea/RT + ln A

k = rate constant

[A] = concentration of A

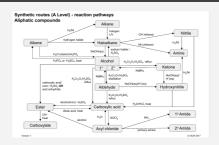
[B] = concentration of B

m = order wrt A

n = order wrt B

A = Arrhenius pre-exponential factor

e = exponential


Ea = activation energy $(kJmol^{1})$

T = temperature, K

 $R = gas constant (8.314 JK^{-1}mol^{-1})$

In = natural log

Reaction pathways (aliphatic compounds)

Conditions and reactants/reagents shown

Electrophilic Addition (alkenes)

	(,
Electrophile	electron pair acceptor
Carbocation	positive ion with electron deficient carbon
Bond fission	heterolytic (cation and anion formed from covalent bond)
Organic product	haloalkane

! Curly arrows show movement of an electron

By **keeping.it.anon** cheatography.com/keeping-it-

Not published yet.

Last updated 21st October, 2024.

Page 3 of 3.

Sponsored by Readable.com

Measure your website readability!

https://readable.com

Chemistry A-Level Cheat Sheet

by keeping.it.anon via cheatography.com/208650/cs/44747/

Nucleophilic Substitution (haloalkanes)			
Reaction	Reagent/cond- itions	Nucleo- phile	Organic product
Hydrolysis (NaOH)	hot NaOH(aq)	ОН	alcohol
NH3	ethanolic NH3	-	amine
KCN	ethanolic KCN	-	nitrile

Nucleophile: electron pair donor

Substitution: when an atom or group of atoms is replaced by another

Ethanolic: derived from or containing ethanol

Nucleophilic Addition (carbonyl compounds)

Reaction with NaBH4	
Reagents/conditions	NaBH4, warmed
Reaction type	reduction
Nuceophile	H ⁻
Organic product	alcohol
Reaction with HCN	
Reagents/conditions	HCN
Nucleophile	CN ⁻
Organic product	hvdroxynitrile

Free radical sub. of ozone

Depletion 1*

CFCI3 --UV-> CFCI2* + CI*

CI* + O3 -> CIO* + O2

CIO* + O -> CI* + O2

Depletion 2**

N2 + O2 -> 2NO*

NO* + O3 -> NO2* + O2

NO2* + O -> NO* + O2

*due to chlorine radicals from CFC's

**due to nitrogen oxide from aircraft engines and lightning

By **keeping.it.anon** cheatography.com/keeping-itanon/ Not published yet. Last updated 21st October, 2024. Page 4 of 3. Sponsored by **Readable.com**Measure your website readability!
https://readable.com