Cheatography

Chemistry A-Level Cheat Sheet by keeping.it.anon via cheatography.com/208650/cs/44747/

Transition metal complexes			
Complex	Few drops NaOH/NH3	Excess NaOH	Excess NH3
pale green [Fe(H20)6] ³⁺	dirty green Fe(OH)2	-	-
green/violet [Cr(h206] ³⁺	pale green Cr(OH)3	deep green soln. [Cr(OH)6] ³⁺	violet soln. [Cr(NH3)6] ³⁺
yellow [Fe(H2O)6] ³⁺	brown Fe(OH)2	-	-
blue [Cu(H2O)6] ²⁺	pale blue Cu(OH)2	-	deep blue soln. [Cu(NH3)4(H2O)2] ²⁺
pale pink [Mn(H2O)6] ²⁺	light brown Mn(OH)2	-	-

Test for halide ions

Halide ion	Adding HNO3 and AgNO3	Adding NH3
Chloride	White ppt	Dissolves in dilute
Bromide	Cream ppt	Dissolves in conc.
lodide	Yellow ppt	Doesn't dissolve

HNO3 added first to the halide, then AgNO3. This forms a ppt, from which the colour can be used to identify the halide. NH3 is then added if necessary; in dilute ammonia, e.g. only chloride ions dissolves, whereas iodide ions don't dissolve at all.

Organic tests (AS)			
Alcohols	Add K2Cr2O7/H+	Orange to green for 1 st and 2 nd alcohols	
Alkenes	Add bromine water	Orange to colourless	
Haloal- kanes	Dissolve in ethan	ol, add water, then do the halide test	

Radical Substitution		
Conditions	UV light	
Bond fission	homolytic (2 radicals formed from covalent bond)	
Organic product	haloalkane	
Limitations	further substitution is almost impossible to control, products have to be separated by fractional distillation or chromatography	
INITIATION	Cl2 -> 2Cl*	
PROPOG- ATION	CH4 + CI* -> *CH3 + HCI	
	CH3 + Cl2 -> CH3Cl + Cl	
TERMIN- ATION	2CI* -> CI2	
	*CH3 +*CH3 -> C2H6	
	CH3 +CI -> CH3CI	

Organic tests (A-level)			
Aldehyde/- ketone	Add 2,4-DNP (Brady's reagent)	Orange ppt forms	
Aldehyde	Add Tollen's reagent	Siler mirror forms	
	Add Fehling's reagent	Red ppt forms	
Carboxylic acid	Add carbonate (same as AS)	CO2 forms	
	Add PCI5	Steamy white fumes produced	
Benzne	Add bromine water (room temp)	no reaction.	
	Combustion	Burns with sooty flame	

Electrophilic Substitution (nitration of benzene)			
Reagents/conditions	conc. HNO3, conc. H2SO4, 50*C		
Electrophile	NO2 ⁺		
Organic product	nitrobenzene		
Gen. of electrphile	HNO3 + H2SO4 -> NO2 ⁺ + HSO4- + H2O		
Regen. of catalyst	HSO4- + H ⁺ -> H2SO4		

Electrophilic Sub. (chlorination of benzene)		
Reagents/conditions	CI2, AICI3	
Electrophile	Cl^+	
Organic product	chlorobenzene	
Gen. of electrphile	AICI3 + CI2 -> AICI4 + CI ⁺	
Regen. of catalystAICI4 ⁻ + H ⁺ -> AICI3 + HCI		

By kee cheate anon/

By **keeping.it.anon** cheatography.com/keeping-itanon/

Not published yet. Last updated 21st October, 2024. Page 2 of 3. Sponsored by Readable.com Measure your website readability! https://readable.com

Cheatography

Chemistry A-Level Cheat Sheet by keeping.it.anon via cheatography.com/208650/cs/44747/

Electrophilic Sub. (acylation of benzene)		
Reagents/conditions	CH3COCI, AICI3	
Electrophile	CH3CO ⁺	
Organic product	phenyl ethanone	
Gen. of electrphile	AICI3 + CH3COCI -> AICI4 ⁻ + CH3CO ⁺	
Regen. of catalyst	AICI4 ⁻ + H ⁺ -> AICI3 + HCI	

Electrophilic Sub. (alkylation of benzene)

Reagents/conditions	CH3CI, AICI3
Electrophile	CH3 ⁺
Organic product	methyl benzene
Gen. of electrphile	CH3CI + AICI3 -> CH3 ⁺ + AICI4 ⁻
Regen. of catalyst	AICI4 ⁻ + H ⁺ -> AICI3 + HCI

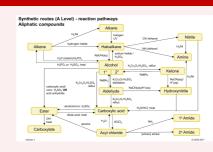
Electrophilic Sub. (bromination of benzene)Reagents/conditionsBr2, AlBr3ElectrophileBr*Organic productbromobenzeneGen. of electrphileAlBr3 + Br2 -> AlBr4⁻ + Br*Regen. of catalystAlBr4- + H* -> AlBr3 + HBr

Ammonium, NH4+

Add NaOH to test for NH3 Red litmus paper turns blue if present

Carbonate, CO3^2-

Add HCl to carbonate solution CO2 forms. Turns limewater cloudy


Sulphate, SO4^2-

Add BaCl2 White ppt forms if present (BaSO4)

Rate equations

Rate = $k[A]^m[B]^n$
$k = Ae^{-Ea/RT}$
In k = -Ea/RT + In A
k = rate constant
[A] = concentration of A
[B] = concentration of B
m = order wrt A
n = order wrt B
A = Arrhenius pre-exponential factor
e = exponential
Ea = activation energy (kJmoΓ ¹)
T = temperature, K
R = gas constant (8.314 JK ⁻¹ mol ⁻¹)
In = natural log

Reaction pathways (aliphatic compounds)

Conditions and reactants/reagents shown

Electrophilic Addition (alkenes) Electrophile electron pair acceptor Carbocation positive ion with electron deficient carbon Bond fission heterolytic (cation and anion formed from covalent bond) Organic haloalkane product ! Curly arrows show movement of an electron

С

anon/

By keeping.it.anon cheatography.com/keeping-itNot published yet.

Last updated 21st October, 2024. Page 3 of 3. Sponsored by Readable.com Measure your website readability! https://readable.com

Cheatography

Chemistry A-Level Cheat Sheet by keeping.it.anon via cheatography.com/208650/cs/44747/

Nucleophilic Substitution (haloalkanes)			
Reaction	Reagent/cond- itions	Nucleo- phile	Organic product
Hydrolysis (NaOH)	hot NaOH(aq)	ОН	alcohol
NH3	ethanolic NH3	-	amine
KCN	ethanolic KCN	-	nitrile

Nucleophile: electron pair donor

Substitution: when an atom or group of atoms is replaced by another Ethanolic: derived from or containing ethanol

Nucleophilic Addition (carbonyl compounds)			
Reaction with NaBH4			
Reagents/conditions	NaBH4, warmed		
Reaction type	reduction		
Nuceophile	H		
Organic product	alcohol		
Reaction with HCN			
Reagents/conditions	HCN		
Nucleophile	CN⁻		
Organic product	hydroxynitrile		

Free radical sub. of ozone

Depletion 1*

CFCI3 --UV-> CFCI2* + CI*

Cl* + O3 -> ClO* + O2

CIO* + O -> CI* + O2

Depletion 2**

N2 + O2 -> 2NO*

NO* + O3 -> NO2* + O2

NO2* + O -> NO* + O2

*due to chlorine radicals from CFC's **due to nitrogen oxide from aircraft engines and lightning

By keeping.it.anon cheatography.com/keeping-itanon/ Not published yet. Last updated 21st October, 2024. Page 4 of 3. Sponsored by **Readable.com** Measure your website readability! https://readable.com